Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small organisms could dramatically impact world’s climate

26.10.2012
Warmer oceans in the future could significantly alter populations of phytoplankton, tiny organisms that could have a major impact on climate change.
In the current issue of Science Express, Michigan State University researchers show that by the end of the 21st century, warmer oceans will cause populations of these marine microorganisms to thrive near the poles and may shrink in equatorial waters. Since phytoplankton play a key role in the food chain and the world’s cycles of carbon, nitrogen, phosphorous and other elements, a drastic drop could have measurable consequences.

“In the tropical oceans, we are predicting a 40 percent drop in potential diversity,” said Mridul Thomas, MSU graduate student and one of the co-authors. “If the oceans continue to warm as predicted, there will be a sharp decline in the diversity of phytoplankton in tropical waters and a poleward shift in species’ thermal niches, if they don’t adapt to climate change.”

Thomas co-authored the study with fellow MSU graduate student Colin Kremer, plant biology, and their faculty mentors Elena Litchman, MSU zoologist, and Christopher Klausmeier, MSU plant biologist. The team, which conducted its research at MSU’s Kellogg Biological Station, explained that since phytoplankton play a key role in regulating atmospheric carbon dioxide levels, and thus, global climate, this shift could cause significant change.

The microorganisms use light, carbon dioxide and nutrients to grow. Although phytoplankton are small, they flourish in every ocean, consuming as much carbon dioxide through photosynthesis as all the terrestrial plants combined.

Water temperatures strongly influence their growth rates. In fact, phytoplankton in warmer equatorial waters can grow much faster than their cold-water cousins. With worldwide temperatures predicted to increase over the next century, it’s important to gauge phytoplankton’s reaction and what will happen to the carbon that they currently carry to the ocean floor.

The researchers were able to show that phytoplankton have adapted to local current temperatures. Based on projections of ocean temperatures in the future, however, many phytoplankton may not adapt quickly enough to changes in their current environment. Since phytoplankton can’t regulate their temperatures or migrate, they may suffer significantly limited growth and diversity, Kremer said.

Being able to forecast the impact of these changes will be a useful tool for scientists around the world, said David Garrison, program director in the National Science Foundation Division of Ocean Sciences.

“This is an important contribution to predicting plankton productivity and community structure in the oceans of the future,” he said. “The work addresses how phytoplankton species are affected by a changing environment, and the really difficult question of whether evolutionary adaptation to those changes is possible.”

This research is funded in part by the National Science Foundation and MSU’s BEACON Center for the Study of Evolution in Action.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>