Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small organisms could dramatically impact world’s climate

26.10.2012
Warmer oceans in the future could significantly alter populations of phytoplankton, tiny organisms that could have a major impact on climate change.
In the current issue of Science Express, Michigan State University researchers show that by the end of the 21st century, warmer oceans will cause populations of these marine microorganisms to thrive near the poles and may shrink in equatorial waters. Since phytoplankton play a key role in the food chain and the world’s cycles of carbon, nitrogen, phosphorous and other elements, a drastic drop could have measurable consequences.

“In the tropical oceans, we are predicting a 40 percent drop in potential diversity,” said Mridul Thomas, MSU graduate student and one of the co-authors. “If the oceans continue to warm as predicted, there will be a sharp decline in the diversity of phytoplankton in tropical waters and a poleward shift in species’ thermal niches, if they don’t adapt to climate change.”

Thomas co-authored the study with fellow MSU graduate student Colin Kremer, plant biology, and their faculty mentors Elena Litchman, MSU zoologist, and Christopher Klausmeier, MSU plant biologist. The team, which conducted its research at MSU’s Kellogg Biological Station, explained that since phytoplankton play a key role in regulating atmospheric carbon dioxide levels, and thus, global climate, this shift could cause significant change.

The microorganisms use light, carbon dioxide and nutrients to grow. Although phytoplankton are small, they flourish in every ocean, consuming as much carbon dioxide through photosynthesis as all the terrestrial plants combined.

Water temperatures strongly influence their growth rates. In fact, phytoplankton in warmer equatorial waters can grow much faster than their cold-water cousins. With worldwide temperatures predicted to increase over the next century, it’s important to gauge phytoplankton’s reaction and what will happen to the carbon that they currently carry to the ocean floor.

The researchers were able to show that phytoplankton have adapted to local current temperatures. Based on projections of ocean temperatures in the future, however, many phytoplankton may not adapt quickly enough to changes in their current environment. Since phytoplankton can’t regulate their temperatures or migrate, they may suffer significantly limited growth and diversity, Kremer said.

Being able to forecast the impact of these changes will be a useful tool for scientists around the world, said David Garrison, program director in the National Science Foundation Division of Ocean Sciences.

“This is an important contribution to predicting plankton productivity and community structure in the oceans of the future,” he said. “The work addresses how phytoplankton species are affected by a changing environment, and the really difficult question of whether evolutionary adaptation to those changes is possible.”

This research is funded in part by the National Science Foundation and MSU’s BEACON Center for the Study of Evolution in Action.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>