Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Glaciers Account for Most of Greenland's Recent Ice Loss

22.09.2008
The recent dramatic melting and breakup of a few huge Greenland glaciers have fueled public concerns over the impact of global climate change, but that isn’t the island’s biggest problem.

A new study shows that the dozens of much smaller outflow glaciers dotting Greenland’s coast together account for three times more loss from the island’s ice sheet than the amount coming from their huge relatives.

In a study just published in the journal Geophysical Research Letters, scientists at Ohio State University reported that nearly 75 percent of the loss of Greenland ice can be traced back to small coastal glaciers.

Ian Howat, an assistant professor of earth sciences and researcher with Ohio State’s Byrd Polar Research Center, said their discovery came through combining the best from two remote sensing techniques. It provides perhaps the best estimate so far of the loss to Greenland’s ice cap, he says.

Aside from Antarctica, Greenland has more ice than anywhere else on earth. The ice cap covers four-fifths of the island’s surface, is 1,491 miles (2,400 kilometers) long and 683 miles (1,100 kilometers) wide, and can reach 1.8 miles (3 kilometers) deep at its thickest point.

As global temperatures rise, coastal glaciers flow more quickly to the sea, with massive chunks breaking off at the margins and forming icebergs. And while some of the largest Greenland glaciers – such as the Jakobshavn and Petermann glaciers on the northern coast – are being closely monitored, most others are not.

Howat and his colleagues concentrated on the southeastern region of Greenland, an area covering about one-fifth of the island’s 656,373 square miles (1.7 million square kilometers). They found that while two of the largest glaciers in that area – Kangerdlugssuaq and Helheim – contribute more to the total ice loss than any other single glaciers, the 30 or so smaller glaciers there contributed 72 percent of the total ice lost.

“We were able to see for the first time that there is widespread thinning at the margin of the Greenland ice sheet throughout this region.

“We’re talking about the region that is within 62 miles (100 kilometers) from the ice edge. That whole area is thinning rapidly,” he said.

Howat says that all of the glaciers are changing within just a few years and that the accelerated loss just spreads up deeper into the ice sheet.

To reach their conclusions, the researchers turned to two ground-observing satellites. One of them, ICESAT (Ice, Cloud, and land Elevation Satellite), does a good job of gauging the ice over vast expanses which were mostly flat.

On the other hand, ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) does a better job at seeing changes at the steeper, less-flat margins of the ice sheet, Howat said.

“We simply merged those data sets to give us for the first time a picture of ice elevation change – the rate at which the ice is either going up or down – at a very high (656-foot or 200-meter) resolution.

“They are a perfect match for each other,” Howat said.

“What we found is the entire strip of ice over the southeast margin, all of these glaciers, accelerated and they are just pulling the entire ice sheet with it,” he said.

Howat said that their results show that such new findings don’t necessarily require new types of satellites. “These aren’t very advanced techniques or satellites. Our work shows that by combining satellite data in the right way, we can get a much better picture of what’s going on,” Howat said.

Along with Howat, B.E. Smith and I Joughin, both of the University of Washington, and T.A. Scambos from the National Snow and Ice Data Center at the University of Colorado worked on the project.

The research was funded in part by the National Aeronautics and Space Administration.

Contact: Ian Howat, (614) 292-6641; ihowat@gmail.com

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

Further reports about: Antarctica Greenland Greenland ice coastal glaciers crystalline ice sheet

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>