Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Glaciers Account for Most of Greenland's Recent Ice Loss

22.09.2008
The recent dramatic melting and breakup of a few huge Greenland glaciers have fueled public concerns over the impact of global climate change, but that isn’t the island’s biggest problem.

A new study shows that the dozens of much smaller outflow glaciers dotting Greenland’s coast together account for three times more loss from the island’s ice sheet than the amount coming from their huge relatives.

In a study just published in the journal Geophysical Research Letters, scientists at Ohio State University reported that nearly 75 percent of the loss of Greenland ice can be traced back to small coastal glaciers.

Ian Howat, an assistant professor of earth sciences and researcher with Ohio State’s Byrd Polar Research Center, said their discovery came through combining the best from two remote sensing techniques. It provides perhaps the best estimate so far of the loss to Greenland’s ice cap, he says.

Aside from Antarctica, Greenland has more ice than anywhere else on earth. The ice cap covers four-fifths of the island’s surface, is 1,491 miles (2,400 kilometers) long and 683 miles (1,100 kilometers) wide, and can reach 1.8 miles (3 kilometers) deep at its thickest point.

As global temperatures rise, coastal glaciers flow more quickly to the sea, with massive chunks breaking off at the margins and forming icebergs. And while some of the largest Greenland glaciers – such as the Jakobshavn and Petermann glaciers on the northern coast – are being closely monitored, most others are not.

Howat and his colleagues concentrated on the southeastern region of Greenland, an area covering about one-fifth of the island’s 656,373 square miles (1.7 million square kilometers). They found that while two of the largest glaciers in that area – Kangerdlugssuaq and Helheim – contribute more to the total ice loss than any other single glaciers, the 30 or so smaller glaciers there contributed 72 percent of the total ice lost.

“We were able to see for the first time that there is widespread thinning at the margin of the Greenland ice sheet throughout this region.

“We’re talking about the region that is within 62 miles (100 kilometers) from the ice edge. That whole area is thinning rapidly,” he said.

Howat says that all of the glaciers are changing within just a few years and that the accelerated loss just spreads up deeper into the ice sheet.

To reach their conclusions, the researchers turned to two ground-observing satellites. One of them, ICESAT (Ice, Cloud, and land Elevation Satellite), does a good job of gauging the ice over vast expanses which were mostly flat.

On the other hand, ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) does a better job at seeing changes at the steeper, less-flat margins of the ice sheet, Howat said.

“We simply merged those data sets to give us for the first time a picture of ice elevation change – the rate at which the ice is either going up or down – at a very high (656-foot or 200-meter) resolution.

“They are a perfect match for each other,” Howat said.

“What we found is the entire strip of ice over the southeast margin, all of these glaciers, accelerated and they are just pulling the entire ice sheet with it,” he said.

Howat said that their results show that such new findings don’t necessarily require new types of satellites. “These aren’t very advanced techniques or satellites. Our work shows that by combining satellite data in the right way, we can get a much better picture of what’s going on,” Howat said.

Along with Howat, B.E. Smith and I Joughin, both of the University of Washington, and T.A. Scambos from the National Snow and Ice Data Center at the University of Colorado worked on the project.

The research was funded in part by the National Aeronautics and Space Administration.

Contact: Ian Howat, (614) 292-6641; ihowat@gmail.com

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

Further reports about: Antarctica Greenland Greenland ice coastal glaciers crystalline ice sheet

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

Innovative autonomous system for identifying schools of fish

20.06.2018 | Information Technology

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>