Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slowly slip-sliding faults don't cause earthquakes

31.08.2009
Some slow-moving faults may help protect some regions of Italy and other parts of the world against destructive earthquakes, suggests new research from The University of Arizona in Tucson.

Until now, geologists thought when the crack between two pieces of the Earth's crust was at a very gentle slope, there was no movement along that particular fault line.

"This study is the first to show that low-angle normal faults are definitely active," said Sigrún Hreinsdóttir, UA geosciences research associate.

Richard A. Bennett, a UA assistant professor of geosciences, wrote in an e-mail. "We can show that the Alto Tiberina fault beneath Perugia is steadily slipping as we speak--fortunately, for Perugia, without producing large earthquakes."

Perugia is the capital city of Italy's Umbria region.

Creeping slowly is unusual, Bennett said. Most faults stick, causing strain to build up, and then become unstuck with a big jerk. Big jerks are big earthquakes.

For decades, researchers have known about the Alto Tiberina and similar faults and debated whether such features in the Earth's crust were faults at all, because they didn't seem to produce earthquakes.

Hreinsdóttir and Bennett have now shown that the gently sloping fault beneath Perugia is moving steadily at the rate of approximately one-tenth of an inch (2.4 mm) a year.

Perugia has not experienced a damaging earthquake in about 2,000 years, Hreinsdóttir said. Because the fault is actively slipping, it might not be collecting strain, she said. "To have an earthquake, you have to have strain."

Other towns in the region that lie near steeply sloping faults, including L'Aquila and Assisi, have experienced large earthquakes within the last 20 years.

The team published their paper, "Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy," in the August issue of Geology. The National Science Foundation funded the research.

In the same issue of Geology, Geoffrey A. Abers terms the UA team's work "a fascinating new discovery." Abers, of Lamont-Doherty Earth Observatory of Columbia University in Palisades, N.Y., was not involved in the research.

The UA team became interested in the Alto Tiberina fault because previous research suggested the fault might be moving.

To check on the fault, the UA team measured rock movements in and around Perugia using a technique called geodesy.

Geodesy works much like the GPS system in a car. Geoscientists put GPS units on rocks, Bennett said. Just as the car's GPS uses global positioning satellites to tell where the car is relative to a desired destination, the geodesy network can tell where one antenna and its rock are relative to another antenna.

Taking repeated measurements over time shows whether the rocks moved relative to one another.

In some cases, the GPS sites are too far apart to attribute very small movements of the Earth to an individual fault such as the Alto Tiberina, Hreinsdóttir said. However, the University of Perugia established a dense network of GPS stations in the region in 2005.

The UA team analyzed data from 19 GPS stations within approximately a 30-mile (50 km) radius around Perugia. Having such closely spaced stations and several years of data were key for detecting the fault's tiny motions, she said.

"This study is one more piece in the puzzle to understand seismic hazards in the region and can apply to other regions of the world that have low-angle normal faults," Hreinsdóttir said.

Bennett said there are numerous examples of such faults that are thought to be inactive, including the western U.S., Italy, Greece and Tibet.

He and UA geosciences doctoral candidate Austin Holland are now investigating similar faults in Arizona. One such fault, the Catalina Detachment, was involved in the formation of the Santa Catalina and Rincon Mountains that surround Tucson to the north and the east.

"No large earthquakes are known to have occurred on the Catalina detachment in historic times, so we don't really know if that fault is active or not," Bennett said. "Based on the results from the Alto Tiberina, it's possible the Catalina Detachment fault just slides very slowly and doesn't produce earthquakes."

The motion would be so slow as to be undetectable until the most recent technological advances in geodesy, he said. "The technology has evolved so far that we are now confident we can see little motions."

To better assess the earthquake risk in the Tucson region, his team is using geodesy throughout southern Arizona to recheck the markers that the National Geodetic Survey measured in the late 1990s.

"Now we can go out and repeat measurements to see how the positions have changed in ten years," he said.

Bennett will soon be able to say how fast the Tucson area's mountains are moving -- his team took measurements earlier this year and is analyzing the data now.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>