Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slowdown of global warming fleeting

08.04.2014

The recent slowdown in the warming rate of the Northern Hemisphere may be a result of internal variability of the Atlantic Multidecadal Oscillation -- a natural phenomenon related to sea surface temperatures, according to Penn State researchers.

"Some researchers have in the past attributed a portion of Northern Hemispheric warming to a warm phase of the AMO," said Michael E. Mann, Distinguished Professor of Meteorology. "The true AMO signal, instead, appears likely to have been in a cooling phase in recent decades, offsetting some of the anthropogenic warming temporarily."

According to Mann, the problem with the earlier estimates stems from having defined the AMO as the low frequency component that is left after statistically accounting for the long-term temperature trends, referred to as detrending.

"Initial investigations into the multidecadal climate oscillation in the North Atlantic were hampered by the short length of the instrumental climate record which was only about a century long," said Mann. "And some of the calculations were contaminated by long-term climate trends driven or forced by human factors such as greenhouse gases as well as pollutants known as sulfate aerosols. These trends masqueraded as an apparent oscillation."

Mann and his colleagues took a different approach in defining the AMO, which they report online in a special "Frontier" paper in Geophysical Research Letters. They compared observed temperature variation with a variety of historic model simulations to create a model for internal variability of the AMO that minimizes the influence of external forcing -- including greenhouse gases and aerosols. They call this the differenced-AMO because the internal variability comes from the difference between observations and the models' estimates of the forced component of North Atlantic temperature change. They found that their results for the most recent decade fall within expected multidecadal variability.

They also constructed plausible synthetic Northern Hemispheric mean temperature histories against which to test the differenced-AMO approaches. Because the researchers know the true AMO signal for their synthetic data from the beginning, they could demonstrate that the differenced-AMO approach yielded the correct signal. They also tested the detrended-AMO approach and found that it did not come up with the known internal variability.

The detrended approach produced an AMO signal with increased amplitude -- both high and low peaks were larger than in the differenced-AMO signal and in the synthetic data. They also found that the peaks and troughs of the oscillation were skewed using the detrending approach, causing the maximums and minimums to occur at different times than in the differenced-AMO results. While the detrended-AMO approach produces a spurious temperature increase in recent decades, the differenced approach instead shows a warm peak in the 1990s and a steady cooling since.

Past researchers have consequently attributed too much of the recent North Atlantic warming to the AMO and too little to the forced hemispheric warming, according to the researchers.

Mann and his team also looked at supposed "stadium waves" suggested by some researchers to explain recent climate trends. The putative climate stadium wave is likened to the waves that go through a sports stadium with whole sections of fans rising and sitting together, propagating a wave around the oval. Random motion of individuals suddenly becomes unified action.

The climate stadium wave supposedly occurs when the AMO and other related climate indicators synchronize, peaking and waning together. Mann and his team show that this apparent synchronicity is likely a statistical artifact of using the problematic detrended-AMO approach.

"We conclude that the AMO played at least a modest role in the apparent slowing of warming during the past decade," said Mann. "As the AMO is an oscillation, this cooling effect is likely fleeting, and when it reverses, the rate of warming increases." Others working on this project were Byron A. Steinman, postdoctoral fellow in meteorology, and Sonya K. Miller, programmer/analyst, meteorology, Penn State.

The National Science Foundation supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Atlantic Hemispheric estimates gases greenhouse individuals oscillation synthetic temperature waves

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

Small- and mid-sized cities particularly vulnerable

29.09.2016 | Earth Sciences

Discovery of an Extragalactic Hot Molecular Core

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>