Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slowdown after Ice Age sounds a warning for Great Barrier Reef's future

05.05.2015

Environmental factors similar to those affecting the present day Great Barrier Reef have been linked to a major slowdown in its growth eight thousand years ago, research led by the University of Sydney, Australia shows.

"Poor water quality, increased sediments and nutrients - conditions increasingly being faced by the modern day reef - caused a delay in the Reef's growth of between seven hundred and two thousand years duration," said Belinda Dechnik, from the University of Sydney's School of Geosciences and lead author of an article published in Marine Geology in May.


This image shows One Tree Island research station on the Great Barrier Reef where Belinda Duchnik conducted her research on a slowdown in the Reef's growth.

Credit: University of Sydney

"It took hundreds more years then we would have expected to establish itself and even longer to attain the complex level of biodiversity that much of the Reef has become famous for."

"While that may appear inconsequential in the 700,000 year history of the Reef even a decade of such delayed growth would have a rapid impact on today's Reef and the experiences of the estimated two million people who visit it every year," Dechnik said.

The research was conducted at the University's research station at One Tree Island on the Reef.

The researchers sampled 15 reef cores from the Southern Great Barrier Reef. The cores were radiocarbon dated to establish their ages. Species of reef corals were also identified to establish any coral community changes over the past eight thousand years.

The findings show that when the Great Barrier Reef started its current regrowth, following the sea level rise when the ice sheets last melted eight thousand years ago, it was acutely sensitive to the turbulent conditions.

The increase in sediments and nutrients following the flooding of the pre-existing reefs is likely to have been responsible for the poor water quality.

"Not only was there a lag in reef growth of up to two thousand years following the flooding of the previous reef platforms but the reef communities that grew there were much less complex than those inhabiting those areas of the reef today. It took another two to three thousand years for the rich diversity that we see in those reef areas today to become established."

The researchers believe the findings have important implications for the future health of the Great Barrier Reef, as port expansions and high nutrient runoff is expected to increase over the coming decades, particularly in Gladstone, adjacent to where the reefs that were studied are located.

###

This research was done in collaboration with the University of Granada and Queen's University, Belfast.

Media Contact

Verity Leatherdale
verity.leatherdale@sydney.edu.au
61-403-067-342

 @SydneyUni_Media

http://www.usyd.edu.au/ 

Verity Leatherdale | EurekAlert!

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>