Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size of mammals exploded after dinosaur extinction

26.11.2010
Researchers first to discover new growth pattern

Researchers demonstrate that the extinction of dinosaurs 65 million years ago made way for mammals to get bigger - about a thousand times bigger than they had been. The study, which is published in the prestigious journal Science, is the first to show this new pattern of increased body size of mammals after the exit of the dinosaurs.


The largest land mammals that ever lived, Indricotherium and Deinotherium, would have towered over the living African elephant. The tallest on diagram, Indricotherium, an extinct rhino relative, lived during the Eocene to the Oligocene Epoch (37 to 23 million years ago) and reached a mass of 15,000 kg, while Deinotherium (an extinct proboscidean, related to modern elephants) was around from the late-Miocene until the early Pleistocene (8.5 to 2.7 million years ago) and weighed as much as 17,000 kg. Credit: Alison Boyer/Yale University

"Basically, the dinosaurs disappear and all of a sudden there is nobody else eating the vegetation. That's an open food source and mammals start going for it, and it's more efficient to be an herbivore when you're big," says paper co-author Dr. Jessica Theodor, associate professor in the Department of Biological Sciences at the University of Calgary.

Theodor says as well as confirming the dramatic growth in mammalian size after the dinosaurs, the study shows that the ecosystem is able to reset itself relatively quickly.

"You lose dinosaurs 65 million years ago, and within 25 million years the system is reset to a new maximum for the animals that are there in terms of body size. That's actually a pretty short time frame, geologically speaking," she says. "That's really rapid evolution."

Theodor says mammals grew from a maximum of about 10 kilograms when they were sharing the earth with dinosaurs to a maximum of 17 tonnes afterwards.

"Nobody has ever demonstrated that this pattern is really there. People have talked about it but nobody has ever gone back and done the math," says Theodor one of the 20 researchers from around the world who worked on the study. "We went through every time period and said OK, for this group of mammals what's the biggest one? And then we estimated its body mass."

In order to document how big mammals grew after the 'competitive release' caused by the extinction of dinosaurs, researchers collected data on the maximum size for major groups of land mammals on each continent, including Perissodactyla, odd-toed ungulates such as horses and rhinos; Proboscidea, which includes elephants, mammoth and mastodon; Xenarthra, the anteaters, tree sloths, and armadillos; as well as a number of other extinct groups.

The results give clues as to what sets the limits on mammal size on land; the amount of space available to each animal and the climate they live in. The colder the climate, the bigger the mammals seem to get, as bigger animals conserve heat better. It also shows that no one group of mammals dominates the largest size class – the absolute largest mammal belongs to different groups over time and space.

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

Further reports about: Xenarthra armadillos bigger animals body size mammals mammoth mastodon

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>