Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silica algae reveal how ecosystems react to climate changes

09.03.2009
A newly published dissertation by Linda Ampel from the Department of Physical Geography and Quaternary Geology at Stockholm University in Sweden examined how rapid climate changes during the most recent ice age affected ecosystems in an area in continental Europe.

Rapid and extensive climate changes have taken place on several occasions in the past. For example, the latest ice age (lasting from about 115,000 to 11,500 years ago) is characterized by several rapid and dramatic climate swings.

These swings recurred in cycles of roughly 1,500 years and were originally discovered through studies of ice cores from Greenland in the early 1990s. These cycles started with an extremely rapid rise in temperatures, over just a few years or decades, of as much as 8-16o C over Greenland.

Linda Ampel studied how these rapid cycles in the climate affected ecosystems in an area in continental Europe. The study was based on analyses of sediment cores from an overgrown lake named Les Echets in eastern France and focuses on a time interval between 40,000 and 16,000 ago.

The findings are based on analyses of fossil silica algae, diatoms. Various species of diatoms prefer different water conditions relating to physical and chemical parameters such as temperature, salinity, access to nutrients, light, water depth, or available types of places to grow. These parameters, in turn, are affected by climate. Different species of diatoms can therefore indicate how the water environment changed as a consequence of the climate in the past.

Diatom analyses of the environmental archive from Les Echets, together with further analyses of chemical and biological parameters such as content of organic material and pollen grains from trees and other plants preserved in the lake, show that the ecosystems in the lake and its surroundings underwent marked changes during the latest ice age as a consequence of these 1,500-year cycles. The adaptation of the ecosystems prompted by the recurring warm periods took place as quickly as within 50 to 200 years.

"These findings show that ecosystems have changed rapidly in reaction to climate changes in the past, which indicates that quick adaptations could also take place in the future as a consequence of global warming, for instance," says Linda Ampel.

Contact: Linda Ampel, linda.ampel@geo.su.se, phone: +46 (0)8-674 75 95 or cell phone: +46 (0)70-366 32 82

Pressofficer Maria Sandqvist: maria.sandqvist@kommunikation.su.se;+46-70664 22 64

Pictures are available of diatoms, the landscape in France, and Linda at http://www.su.se/pub/jsp/polopoly.jsp?d=5833&a=59203

Maria Sandqvist | idw
Further information:
http://www.vr.se
http://www.su.se/pub/jsp/polopoly.jsp?d=5833&a=59203

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>