Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant Role of Oceans in Onset of Ancient Global Cooling

27.05.2011
Evidence that early Antarctic Circumpolar Current development affected global climate

Thirty-eight million years ago, tropical jungles thrived in what are now the cornfields of the American Midwest and furry marsupials wandered temperate forests in what is now the frozen Antarctic.

The temperature differences of that era, known as the late Eocene, between the equator and Antarctica were half what they are today.

A debate has been ongoing in the scientific community about what changes in our global climate system led to such a major shift from the more tropical, greenhouse climate of the Eocene to modern and much cooler climates.

New research results published in this week's issue of the journal Science, led by Rensselaer Polytechnic Institute scientist Miriam Katz, are providing some of the strongest evidence to date that the Antarctic Circumpolar Current (ACC) played a key role in the shift.

"What we have found is that the evolution of the Antarctic Circumpolar Current influenced global ocean circulation much earlier than previous studies have shown," said Katz. "This finding is particularly significant because it places the impact of initial shallow ACC circulation in the same interval when the climate began its long-term shift to cooler temperatures."

There has been a debate over the past 40 years on what role the Antarctic Circumpolar Current had in the past cooling trend.

"These climate changes are one of the most significant shifts in Earth's history, from early Cenozoic 'greenhouse' climates to the mid- to late Cenozoic 'icehouse' that saw repeated massive glaciations of the polar regions," said Candace Major, program director in the National Science Foundation's (NSF) Division of Ocean Sciences.

The research was funded by NSF in partnership with the Integrated Ocean Drilling Program, and its predecessor programs, the Ocean Drilling Program and Deep Sea Drilling Project.

"The work by Katz and colleagues is the first to demonstrate that the basic structure of currents associated with modern ocean circulation has existed for the past 33 million years," said Major.

Previous research had placed the development of the deep ACC--greater than 2,000 meters water depth--in the late Oligocene, approximately 23-25 million years ago.

That's well after the global cooling pattern had been established.

Katz and colleagues have placed the global impact of the ACC at approximately 30 million years ago, when it was still just a shallow current.

Oceans and global temperatures are closely linked. Warmer ocean waters result in warmer air temperatures and vice versa.

In the more tropical environs of the Eocene, ocean circulation was weaker and currents more diffuse.

As a result, heat was more evenly distributed around the world. That resulted in fairly mild ocean temperatures worldwide.

Today, ocean temperatures vary considerably and redistribute warm and cold water around the globe.

"As the global ocean currents were formed and strengthened, the redistribution of heat likely played a significant role in the overall cooling of the Earth," Katz said.

No current is more major than the ACC, scientists believe.

Often referred to as the "mixmaster" of the ocean, the ACC thermally isolates Antarctica by preventing the warm surface waters of subtropical gyres from passing through.

The ACC instead redirects some of that warm water back toward the north Atlantic, creating Antarctic Intermediate Water.

This blocking of heat enabled the formation and preservation of the Antarctic ice sheets, according to Katz.

The circumpolar circulation, Katz concludes, was responsible for the development of the modern four-layer ocean current and heat distribution system.

Katz looked at the uptake of several elements' isotopes, or variants, in the fossil skeletons of small planktonic organisms found in ocean sediments.

Using the drillship, the fossil organisms, known as benthic foraminifera, were brought up from beneath the sea-floor in long cores of sediments.

The foraminifera incorporated certain elements and isotopes, reflecting environmental conditions at the time.

By analyzing the ratios of these elements and isotopes, researchers were able to reconstruct past environmental conditions. They looked at isotopes of oxygen and carbon, along with ratios of magnesium versus calcium.

Analysis of these isotopes showed the earliest evidence for Antarctic Intermediate Waters, which circulates as a consequence of the ACC.

This finding is the first evidence of the effects of shallow ACC formation.

The results place the ACC's global impact much closer to the time when Antarctica separated from South America, creating a gateway.

It had previously been thought that currents moving through this gateway could not be strong enough at such shallow depths to affect global ocean circulation.

"By reconstructing the climates of the past, we can explore Earth system responses to current climate change," Katz said.

Katz is joined in the research by Benjamin Cramer of Theiss Research; J.R. Toggweiler of Geophysical Fluid Dynamics Lab/NOAA; Chengjie Liu of Exxon Mobil Exploration Co.; Bridget Wade of University of Leeds; and Gar Esmay, Kenneth Miller, Yair Rosenthal, and James Wright of Rutgers University.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Gabrielle DeMarco, RPI (518) 276-6542 demarg@rpi.edu
Kris Ludwig, Consortium for Ocean Leadership-IODP (202) 448-1254 kludwig@oceanleadership.org
Related Websites
Integrated Ocean Drilling Program: http://www.iodp.org
Ocean Drilling Program: http://www-odp.tamu.edu/sched.html
Deep Sea Drilling Project: http://www.deepseadrilling.org/i_reports.htm
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>