Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant Role of Oceans in Onset of Ancient Global Cooling

27.05.2011
Evidence that early Antarctic Circumpolar Current development affected global climate

Thirty-eight million years ago, tropical jungles thrived in what are now the cornfields of the American Midwest and furry marsupials wandered temperate forests in what is now the frozen Antarctic.

The temperature differences of that era, known as the late Eocene, between the equator and Antarctica were half what they are today.

A debate has been ongoing in the scientific community about what changes in our global climate system led to such a major shift from the more tropical, greenhouse climate of the Eocene to modern and much cooler climates.

New research results published in this week's issue of the journal Science, led by Rensselaer Polytechnic Institute scientist Miriam Katz, are providing some of the strongest evidence to date that the Antarctic Circumpolar Current (ACC) played a key role in the shift.

"What we have found is that the evolution of the Antarctic Circumpolar Current influenced global ocean circulation much earlier than previous studies have shown," said Katz. "This finding is particularly significant because it places the impact of initial shallow ACC circulation in the same interval when the climate began its long-term shift to cooler temperatures."

There has been a debate over the past 40 years on what role the Antarctic Circumpolar Current had in the past cooling trend.

"These climate changes are one of the most significant shifts in Earth's history, from early Cenozoic 'greenhouse' climates to the mid- to late Cenozoic 'icehouse' that saw repeated massive glaciations of the polar regions," said Candace Major, program director in the National Science Foundation's (NSF) Division of Ocean Sciences.

The research was funded by NSF in partnership with the Integrated Ocean Drilling Program, and its predecessor programs, the Ocean Drilling Program and Deep Sea Drilling Project.

"The work by Katz and colleagues is the first to demonstrate that the basic structure of currents associated with modern ocean circulation has existed for the past 33 million years," said Major.

Previous research had placed the development of the deep ACC--greater than 2,000 meters water depth--in the late Oligocene, approximately 23-25 million years ago.

That's well after the global cooling pattern had been established.

Katz and colleagues have placed the global impact of the ACC at approximately 30 million years ago, when it was still just a shallow current.

Oceans and global temperatures are closely linked. Warmer ocean waters result in warmer air temperatures and vice versa.

In the more tropical environs of the Eocene, ocean circulation was weaker and currents more diffuse.

As a result, heat was more evenly distributed around the world. That resulted in fairly mild ocean temperatures worldwide.

Today, ocean temperatures vary considerably and redistribute warm and cold water around the globe.

"As the global ocean currents were formed and strengthened, the redistribution of heat likely played a significant role in the overall cooling of the Earth," Katz said.

No current is more major than the ACC, scientists believe.

Often referred to as the "mixmaster" of the ocean, the ACC thermally isolates Antarctica by preventing the warm surface waters of subtropical gyres from passing through.

The ACC instead redirects some of that warm water back toward the north Atlantic, creating Antarctic Intermediate Water.

This blocking of heat enabled the formation and preservation of the Antarctic ice sheets, according to Katz.

The circumpolar circulation, Katz concludes, was responsible for the development of the modern four-layer ocean current and heat distribution system.

Katz looked at the uptake of several elements' isotopes, or variants, in the fossil skeletons of small planktonic organisms found in ocean sediments.

Using the drillship, the fossil organisms, known as benthic foraminifera, were brought up from beneath the sea-floor in long cores of sediments.

The foraminifera incorporated certain elements and isotopes, reflecting environmental conditions at the time.

By analyzing the ratios of these elements and isotopes, researchers were able to reconstruct past environmental conditions. They looked at isotopes of oxygen and carbon, along with ratios of magnesium versus calcium.

Analysis of these isotopes showed the earliest evidence for Antarctic Intermediate Waters, which circulates as a consequence of the ACC.

This finding is the first evidence of the effects of shallow ACC formation.

The results place the ACC's global impact much closer to the time when Antarctica separated from South America, creating a gateway.

It had previously been thought that currents moving through this gateway could not be strong enough at such shallow depths to affect global ocean circulation.

"By reconstructing the climates of the past, we can explore Earth system responses to current climate change," Katz said.

Katz is joined in the research by Benjamin Cramer of Theiss Research; J.R. Toggweiler of Geophysical Fluid Dynamics Lab/NOAA; Chengjie Liu of Exxon Mobil Exploration Co.; Bridget Wade of University of Leeds; and Gar Esmay, Kenneth Miller, Yair Rosenthal, and James Wright of Rutgers University.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Gabrielle DeMarco, RPI (518) 276-6542 demarg@rpi.edu
Kris Ludwig, Consortium for Ocean Leadership-IODP (202) 448-1254 kludwig@oceanleadership.org
Related Websites
Integrated Ocean Drilling Program: http://www.iodp.org
Ocean Drilling Program: http://www-odp.tamu.edu/sched.html
Deep Sea Drilling Project: http://www.deepseadrilling.org/i_reports.htm
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>