Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shrinking glaciers reveal hidden forests and a warmer climate

04.12.2008
Uniquely old tree remains have recently been uncovered by the thawing of the rapidly shrinking Kårsa Glacier west of Abisko in Lapland, in northernmost Sweden. The finds show that in the last 7,000 years it has probably never been so warm as during the last century.

"If the area hadn't been covered by a glacier all these thousands of years, these tree remnants would never have made it. The finds yield information indicating that the 20th century was probably the warmest century in 7,000 years. The fact that the climate is so unique during the last century means that we must question whether this could be 100 percent the result of natural mechanisms," says Leif Kullman, professor of physical geography, who is directing the project.

Pines and birches grew on the site of the glacier during parts of or perhaps the entire period between 11,800 and 7,000 years ago. This is shown by carbon 14 dating of the remains of trees that have now been uncovered. During that period, the glacier did not continuously exist, and the climate was warmer than at any time afterward.

All in all, there are four finds, parts of birch and pine trunks, that have been uncovered under the shrinking glacier in the Lapland mountains. In most cases they are well preserved, but they are degrading rapidly as they come in contact with air and water. As early as 2003, tree remnants of a similar age were found in Sylarna, in Jämtland province. They have completely crumbled into dust at this point. The warmer climate during the last century, which is the reason the tree remnants have now seen the light of day, may therefore be unique in the perspective of many millennia.

The oldest tree, a pine, lived and died on the site of the Kårsa glacier around 12,000 years ago. The area is 400-450 meters above today's timberline. This discovery places the thawing of ice at the end of the latest ice age in an entirely new perspective.

"Previous research indicated that Lapland was covered with ice at this time. These finds show that the ice melted and life returned much earlier than we previously thought," says Leif Kullman.

The researchers are now continuing their examination of glaciers in northern Lapland and Västerbotten (West Bothnia). This ongoing research is part of a larger project that comprises glaciers throughout the entire range of mountains in Sweden. The project is funded by the Swedish Research Council and is directed by Professor Leif Kullman, Umeå University.

For further information and photos, please contact:
Leif Kullman, professor of physical geography
Phone: +46 (0)90-786 68 93; cell phone: +46 (0)70-5641848
E-post: leif.kullman@emg.umu.se
Pressofficer Karin Wikman; karin.wikman@adm.umu.se; +46-70 610 08 05

Karin Wikman | idw
Further information:
http://www.umu.se
http://www.vr.se

Further reports about: Kårsa Glacier Shrinking glaciers forests ice age old tree warmer climate

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>