Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shrinking atmospheric layer linked to low levels of solar radiation

27.08.2010
Large changes in the Sun’s energy output may cause Earth’s outer atmosphere to contract, new research indicates. A study published today by the American Geophysical Union links a recent, temporary shrinking of a high atmospheric layer with a sharp drop in the Sun’s ultraviolet radiation levels.

The research indicates that the Sun’s magnetic cycle, which produces differing numbers of sunspots over an approximately 11-year cycle, may vary more than previously thought.

“Our work demonstrates that the solar cycle not only varies on the typical 11-year time scale, but also can vary from one solar minimum to another,” says lead author Stanley Solomon, a scientist at the National Center for Atmospheric Research’s High Altitude Observatory. “All solar minima are not equal.” Researchers from the University of Colorado at Boulder (CU) also contributed to the project.

The findings may have implications for orbiting satellites, as well as for the International Space Station. The fact that the layer in the upper atmosphere known as the thermosphere is shrunken and dense means that satellites can more easily maintain their orbits. But it also indicates that space debris and other objects that pose hazards may persist longer in the thermosphere.

“With lower thermospheric density, our satellites will have a longer life in orbit,” says CU professor Thomas Woods, a co-author. “This is good news for those satellites that are actually operating, but it is also bad because of the thousands of non-operating objects remaining in space that could potentially have collisions with our working satellites.”

The Sun’s energy output declined to unusually low levels from 2007 to 2009, a particularly prolonged solar minimum during which there were virtually no sunspots or solar storms. During that same period of low solar activity, Earth’s thermosphere shrank more than at any time in the 43-year era of space exploration.

The thermosphere, which ranges in altitude from about 90 to 500 kilometers (55 to more than 300 miles), is a rarified layer of gas at the edge of space where the Sun’s radiation first makes contact with Earth’s atmosphere. It typically cools and becomes less dense during low solar activity. But the magnitude of the density change during the recent solar minimum appeared to be about 30 percent greater than would have been expected by low solar activity.

The study team used computer modeling to analyze two possible factors implicated in the mystery of the shrinking thermosphere. They simulated both the impacts of solar output and the role of carbon dioxide, a potent greenhouse gas that, according to past estimates, is reducing the density of the outer atmosphere by about 2 percent to 5 percent per decade.

Their work built on several recent studies. Earlier this year, a team of scientists from the Naval Research Laboratory and George Mason University, measuring changes in satellite drag, estimated that the density of the thermosphere declined from 2007–2009 to about 30 percent less than that observed during the previous solar minimum in 1996. Other studies by scientists at the University of Southern California and CU, using measurements from sub-orbital rocket flights and space-based instruments, have estimated that levels of extreme-ultraviolet radiation—a class of photons with extremely short wavelengths—dropped about 15 percent during the same period.

However, scientists remained uncertain whether the decline in extreme-ultraviolet radiation would be sufficient to have such a dramatic impact on the thermosphere, even when combined with the effects of carbon dioxide.

To answer this question, Solomon and his colleagues used a computer model to simulate how the Sun’s output during 1996 and 2008 would affect the temperature and density of the thermosphere. They also created two simulations of thermospheric conditions in 2008—one with a level that approximated actual carbon dioxide emissions and one with a fixed, lower level.

The results showed the thermosphere cooling in 2008 by 41 kelvin (about 74 degrees Fahrenheit) compared to 1996, with just 2 K attributable to the carbon dioxide increase. The results also showed the thermosphere’s density decreasing by 31 percent, with just 3 percent attributable to carbon dioxide. The results closely approximated the 30 percent reduction in density indicated by measurements of satellite drag.

“It is now clear that the record low temperature and density were primarily caused by unusually low levels of solar radiation at the extreme-ultraviolet level,” Solomon says.

Woods says the research indicates that the Sun could be going through a period of relatively low activity, similar to periods in the early 19th and 20th centuries. This could mean that solar output may remain at a low level for the near future.

“If it is indeed similar to certain patterns in the past, then we expect to have low solar cycles for the next 10 to 30 years,” Woods says.

The study, published in Geophysical Research Letters, was funded by NASA and by the National Science Foundation.

Title:
“Anomalously Low Solar Extreme-Ultraviolet Irradiance and Thermospheric Density During Solar Minimum”
Authors:
Stanley Solomon, Thomas Woods, Leonid Didkovsky, John Emmert, and Liying Qian
Author contacts:
Stanley Solomon, NCAR Scientist, 303-497-2179, stans@ucar.edu Thomas Woods, CU Professor, 303-492-4224, tom.woods@lasp.colorado.edu

Kathleen O’Neil | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>