Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitivity of carbon cycle to tropical temperature variations has doubled, research shows

27.01.2014
The tropical carbon cycle has become twice as sensitive to temperature variations over the past 50 years, new research has revealed.

The research shows that a one degree rise in tropical temperature leads to around two billion extra tonnes of carbon being released per year into the atmosphere from tropical ecosystems, compared with the same tropical warming in the 1960s and 1970s.

Professor Pierre Friedlingstein and Professor Peter Cox, from the University of Exeter, collaborated with an international team of researchers from China, Germany, France and the USA, to produce the new study, which is published in the leading academic journal Nature.

Existing Earth System Model simulations indicate that the ability of tropical land ecosystems to store carbon will decline over the 21st century. However, these models are unable to capture the increase in the sensitivity of carbon dioxide to tropical temperatures that is reported in this new study.

Research published last year by Professors Cox and Friedlingstein showed that these variations in atmospheric carbon dioxide can reveal the sensitivity of tropical ecosystems to future climate change.

Taken together, these studies suggest that the sensitivity of tropical ecosystems to climate change has increased substantially in recent decades.

Professor Cox, from the College of Engineering, Mathematics and Physical Sciences said "The year-to-year variation in carbon dioxide concentration is a very useful way to monitor how tropical ecosystems are responding to climate.

"The increase in carbon dioxide variability in the last few decades suggests that tropical ecosystems have become more vulnerable to warming".

Professor Friedlingstein, who is an expert in global carbon cycle studies added: "Current land carbon cycle models do not show this increase over the last 50 years, perhaps because these models underestimate emerging drought effects on tropical ecosystems".

The lead author of the study, Xuhui Wang of Peking University, added: "This enhancement is very unlikely to have resulted from chance, and may provide a new perspective on a possible shift in the terrestrial carbon cycle over the past five decades".

Duncan Sandes | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>