Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitivity of carbon cycle to tropical temperature variations has doubled, research shows

27.01.2014
The tropical carbon cycle has become twice as sensitive to temperature variations over the past 50 years, new research has revealed.

The research shows that a one degree rise in tropical temperature leads to around two billion extra tonnes of carbon being released per year into the atmosphere from tropical ecosystems, compared with the same tropical warming in the 1960s and 1970s.

Professor Pierre Friedlingstein and Professor Peter Cox, from the University of Exeter, collaborated with an international team of researchers from China, Germany, France and the USA, to produce the new study, which is published in the leading academic journal Nature.

Existing Earth System Model simulations indicate that the ability of tropical land ecosystems to store carbon will decline over the 21st century. However, these models are unable to capture the increase in the sensitivity of carbon dioxide to tropical temperatures that is reported in this new study.

Research published last year by Professors Cox and Friedlingstein showed that these variations in atmospheric carbon dioxide can reveal the sensitivity of tropical ecosystems to future climate change.

Taken together, these studies suggest that the sensitivity of tropical ecosystems to climate change has increased substantially in recent decades.

Professor Cox, from the College of Engineering, Mathematics and Physical Sciences said "The year-to-year variation in carbon dioxide concentration is a very useful way to monitor how tropical ecosystems are responding to climate.

"The increase in carbon dioxide variability in the last few decades suggests that tropical ecosystems have become more vulnerable to warming".

Professor Friedlingstein, who is an expert in global carbon cycle studies added: "Current land carbon cycle models do not show this increase over the last 50 years, perhaps because these models underestimate emerging drought effects on tropical ecosystems".

The lead author of the study, Xuhui Wang of Peking University, added: "This enhancement is very unlikely to have resulted from chance, and may provide a new perspective on a possible shift in the terrestrial carbon cycle over the past five decades".

Duncan Sandes | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Earth Sciences:

nachricht More ice in a warming world
16.12.2014 | Max-Planck-Institut für Meteorologie

nachricht NASA Catches Tropical Cyclone Bakung's Remnants
15.12.2014 | NASA's Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Smart Cities

08.12.2014 | Event News

European Polymer Congress 2015 in Dresden/Germany

01.12.2014 | Event News

Regional economic cooperation in Central Asia

21.11.2014 | Event News

 
Latest News

Global CO2 emissions increase to new all-time record, but growth is slowing down

17.12.2014 | Ecology, The Environment and Conservation

Bugs life: The nerve cells that make locusts 'gang up'

17.12.2014 | Life Sciences

New class of synthetic molecules mimics antibodies

17.12.2014 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>