Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sensational climate research in the Arctic

Longest climate archive of the terrestrial Arctic retrieved

An international team of researchers from Russia, Germany, the USA and Austria has conducted a deep drilling programme in the utmost northeast of Russia during the last six months to retrieve several hundred metres of marine sediments, impact breccias and permanently frozen soil.

These make new insights into the climate history of the Arctic, crater formation of the Elgygytgyn Lake and permafrost dynamics possible. A milestone has been reached at the beginning of May with the first results of the drilling campaign. The cores gained will help to answer crucial open questions of Arctic geology.

At the utmost northern fringe of north-eastern Siberia, about 900 kilometres west of the Bering Strait and 100 km north of the Arctic Circle (67°30' N, 172°05' E), lies the Elgygytgyn Lake which originated 3.6 Mio years ago from a meteoride impact. The lake has, in contrast to other areas of this latitude, never been glaciated - the sediments which accumulated continually at the bottom of the lake are therefore an invaluable Arctic climate archive.

International researchers from various disciplines have set the goal to retrieve this archive. Preparations took eleven years before the large scale deep drilling campaign began at the end of the last year. Infrastructure for up to 40 people had to be created in this remote area under the most difficult conditions - accommodations, sanitary installations and supply utilities.

"Humans and technical appliances need sufficient energy in temperatures of down to -45°C, for instance for storing the drilling cores above freezing point", says Martin Melles from the University of Cologne, project manager of the Elgygytgyn Drilling Project on the side of the Germans. The drilling equipment employed for drillings in the sea weighs about 70 tons, a great challenge for its safe positioning on the sea ice.

At the end of the last year, permafrost drillings were performed by a Russian construction company from the 260 km distant Pevek. It yielded impressive results: the team reached a drilling depth of 142 metres despite heavy snowstorms and low temperatures. The cores contain information on the permafrost history and its influence on sea sedimentation. "It is possible to read sea level fluctuations from the cores", reports Georg Schwammborn from the Research Station Potsdam of the Alfred Wegener Institute who headed the permafrost drillings. Of great importance is the installation of a temperature measurement chain in the drilling hole by the researchers from Potsdam. It documents the current changes in the permafrost soil. Its understanding is of great value for climate research since the release of the gases bound in the thawing permafrost might further reinforce the greenhouse effect.

The sea drillings which have just been completed were no less successful: sea sediments were drilled 315 metres below the sea bottom; the upper 110 metres overlapped to close the remaining gap of the first drilling in the archive. First results indicate that the climate and environment history of the last 3.6 Mio years is largely documented. Measurements of the magnetic properties in the upper part of the sediment layers show numerous warm and glacial periods with different intensities and characteristics. "We can learn from detailed examinations of the transition from a glacial to a warm period that the Arctic reacted to global warming in the past; it is therefore safe to assume that it will also react to it in the future ", explains Catalina Gebhardt from the Alfred Wegener Institute in Bremerhaven. The deepest sea sediment cores reached into the Pliocene of 2.6 million years ago. "These sediments are of unique importance because the climate of this time was considerably warmer than it is today", says Martin Melles. "The insights gained from these sediments can serve as a perfect example for the Arctic in a few years time, in case the global warming takes place as prognosticated by climate models."

An important goal of the sea drilling was the drilling of the impact breccias. This clastic rock created by a meteorite impact was found 315 metres below the sea bottom. The cores drawn by drilling 200 metres into the breccias are invaluable. "We expect new insights not only about the trajectory and composition of the meteorite, but particularly about the reactions of the volcanic rocks to the impact", says Christian Koeberl from the University of Vienna, who coordinates the international team processing the impact rocks. The insights serve the risk assessments in areas with similar rock formations.

The 3.5 tons of cores drilled in 2009 will be brought to the Russian Arctic and Antarctic Research Institute (AARI) in St. Petersburg at the start of June. The cores of the whole drilling campaign will thereafter be brought to Germany: the permafrost cores to the Alfred Wegener Institute for Polar and Marine Research, the sea sediments to the University of Cologne and the impact breccias to the ICDP in Potsdam. The examinations will take two years. Altogether, about 30 guest researchers next to the German researchers and students will work on the cores.

You can find information of the project here:

Partner research institutes:
Russian: NEISRI Magadan and AARI St. Petersburg
German: Alfred Wegener Institute for Polar and Marine Research, German Research Centre for Geosciences Potsdam and the University of Cologne
American: University of Massachusetts
Austrian: University of Vienna
Heads of the project:
Russian: Pavel Minyuk, NEISRI Magadan
German: Martin Melles, University of Cologne (he coordinates the German partners and their subprojects)
American: Julie Brigham-Grette, University of Massachusetts
Austrian: Christian Köberl, University of Vienna
The Elgygytgyn Drilling Project is funded by the ICDP, BMBF, NSF, RAS, the BMWF and the Helmholtz Centres Alfred Wegener Institute and the German Research Centre for Geosciences.
Notes for Editors:
Your contact persons are Dr Catalina Gebhardt (phone +49 471 4831-1946; email: and Dr Georg Schwamborn (phone +49 331 288-2174; email: as well as Magdalena Hamm, Communications and Media Relations (phone +49 471 4831-2008; email: Please find printable images on:

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and provides international science with important infrastructure, e.g. the research icebreaker Polarstern and research stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of 15 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>