Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismology highlights

11.02.2011
Seismology highlights from BSSA Feb. issue

A sequence of small earthquakes that occurred at the Dallas-Fort Worth Airport between October 30, 2008 and May 31, 2009 were likely triggered by the disposal of brines accompanying natural gas production at a nearby well that had recently been completed, according to research published in the February issue of the Bulletin of the Seismological Society of America (BSSA).

Many residents of the Dallas-Fort Worth area felt small earthquakes, which had magnitudes between 2.2 and 3.3, prompting scientists to investigate. The area, home to more than four million residents, had experienced no previous earthquakes in historic times. A significant increase since 2002 in the number of permits authorizing drilling and hydraulic fracturing to promote natural gas raised the possibility of induced earthquakes.

Researchers from University of Texas at Austin and Southern Methodist University analyzed data captured by regional and temporary seismic networks, which identified more than 180 earthquakes. Because of the absence of previous historical earthquakes, the proximity of the brine disposal well, and the similarity with other documented cases of induced seismicity in Texas, the authors suggest that the injected fluid migrated to a previously inactive fault, reactivating it.

The Dallas-Fort Worth Earthquake Sequence: October 2008 through May 2009, by Cliff Frohlich and Eric Potter of University of Texas at Austin; Chris Hayward and Brian Stump of Southern Methodist University.

Media contact: Cliff Frohlich, cliff@ig.utexas.edu, 512-471-0460

Identifying large hurricanes through seismology

Storm-generated seismic signals may allow seismologists to detect large hurricanes at sea and track their intensity, adding useful data to the discussion of whether anthropogenic global warming has increased the frequency and intensity of hurricanes and tropical storms, including ones that don't reach land.

Ambient noise, or microseisms, is the pervasive background signal bathing the surface of the Earth and is not produced by earthquakes. These surface waves generated by ocean storms are detected even in continental interiors far from source regions.

Researchers at Northwestern University demonstrate that the August 1992 category 5 Hurricane Andrew can be detected using microseisms recorded at the Harvard, Massachusetts seismic station, even while the storm is as far as 1200 miles away at sea. When applied to decades of existing analog seismograms, this methodology could yield a seismically identified hurricane record for comparison to the pre-aircraft and pre-satellite observational record.

Seismological Identification and Characterization of a Large Hurricane, by Carl W. Ebeling and Seth Stein of Northwestern University.

Media contact: Carl W. Ebeling, carl@earth.northwestern.edu, 847-467-1639

Southern San Andreas quake expected soon

The Coachella Valley section of the San Andreas fault, between San Gorgonio Pass and the Imperial Valley, is the only portion of the fault which has not ruptured in a major earthquake during historical time. New paleoseismic data suggests an average recurrence cycle of 116 to 221 years, indicating that it is past the expected time for a fault rupture.

Researchers from the University of Oregon and the U.S. Geological Survey have constructed an earthquake chronology for the past 1200 years for the southernmost San Andreas fault based on a new paleoseismic investigation conducted in the city of Coachella, California. Five to seven earthquakes were identified, with the last earthquake occurring at the site approximately 320 years ago. The interval since the last earthquake is as long or longer than every period of previous quiescence in the paleoseismic record.

This long period of quiescence suggests that an unusually large amount of elastic strain has built up along the southern San Andreas segment, making it likely to produce a large to great (Mw7-8) earthquake in the near future.

San Andreas Fault Earthquake Chronology and Lake Cahuilla History at Coachella, California, by Belle Philibosian of Caltech, Thomas Fumal of U.S. Geological Survey and Ray Weldon of University of Oregon.

Corresponding author: Belle Philibosian, belle@gps.caltech.edu, 626-395-3811.

Nan Broadbent | EurekAlert!
Further information:
http://www.seismosoc.org

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>