Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic waves converted to audio to study quake’s traits

07.03.2012
Last year’s 9.0-magnitude Tohoku-Oki, Japan, earthquake was the fourth largest since 1900. However, because of thousands of seismometers in the region and Japan’s willingness to share their measurements with the rest of the world, the Tohoku-Oki quake is the best-recorded earthquake of all-time.

This plethora of information is allowing scientists to share their findings in unique ways. Zhigang Peng, associate professor in Georgia Tech’s School of Earth and Atmospheric Sciences, has converted the earthquake’s seismic waves into audio files. The results allow experts and general audiences to “hear” what the quake sounded like as it moved through the earth and around the globe.

“We’re able to bring earthquake data to life by combining seismic auditory and visual information,” said Peng, whose research appears in the March/April edition of Seismological Research Letters. “People are able to hear pitch and amplitude changes while watching seismic frequency changes. Audiences can relate the earthquake signals to familiar sounds such as thunder, popcorn popping and fireworks.”

The different sounds can help explain various aspects of the earthquake sequence, including the mainshock and nearby aftershocks. For example, this measurement was taken near the coastline of Japan between Fukushima (the nuclear reactor site) and Tokyo. The initial blast of sound is the 9.0 mainshock. As the earth’s plates slipped dozens of meters into new positions, aftershocks occured. They are indicated by “pop” noises immediately following the mainshock sound. These plate adjustments will likely continue for years.

As the waves from the earthquake moved through the earth, they also triggered new earthquakes thousands of miles away. In this example, taken from measurements in California, the quake created subtle movements deep in the San Andreas Fault. The initial noise, which sounds like distant thunder, corresponds with the Japanese mainshock. Afterwards, a continuous high-pitch sound, similar to rainfall that turns on and off, represents induced tremor activity at the fault. This animation not only help scientists explain the concept of distant triggering to general audiences, but also provides a useful tool for researchers to better identify and understand such seismic signals in other regions.

The human ear is able to hear sounds for frequencies between 20 Hz and 20 kHz, a range on the high end for earthquake signals recorded by seismometers. Peng, graduate student Chastity Aiken and other collaborators in the U.S. and Japan simply played the data faster than true speed to increase the frequency to audible levels. The process also allows audiences to hear data recorded over minutes or hours in a matter of seconds.

The research is published in the March/April edition of Seismological Research Letters.

For more on the anniversary of the Japan disaster, visit www.gatech.edu/experts/japan-anniversary.

This project was supported in part by the National Science Foundation (NSF) (CAREER Award No. EAR-0956051). The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NSF.

Jason Maderer | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>