Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic response to natural gas anomalies in crystalline rocks

07.11.2008
The research done at the Chinese Academy of Geological Sciences has shown that after geochemical experiments, the porosity of crystalline rocks in the middle crust increases sharply due to water-rock interaction (see ref.).

This research further shows the increased porosity facilitates natural gas concentrations in top of the mid-crust to form some large gas reservoirs, which can be detected using the three-component seismic method. The results are reported in Science in China Ser. D 2008 (No.9 in Chinese and No.12 in English). As drilling machines have reached 12 km-deep now, these gas reservoirs can be practically exploited.

The geological and seismic reflection data of the Chinese continental drilling reveal that the gas anomalies of CH4, CO2, and He occur in the deep crystalline rocks. In the drilling hole, the concentration of CH4 occurs mainly in the interval of 2310 m-3280 m with the peak value of 260 ppm; Notable concentration anomalies of He also occur in the interval ranging between 10 and 46 ppm. The general near-vertical reflection profiles show that strong seismic responses are mainly correlated to ductile shear zones and have rather weak correlation with the location of the gas anomalies. However, after the three-component seismic survey was performed in the drilling site, horizontally converted wave reflectors clearly appear at 2310m-3280m where the main CH4/He anomalies occur. Thus the zone of the gas anomalies could be approximately defined by reflectors of nearly horizontally converted S-wave events.

The measured physical parameters of the cores include porosity, water-permeability, elastic wave velocity, conductivity, and thermal conductivity etc. For the interval with gas anomalies (2310m-3280m), gneiss has the lowest porosity (1% or so) and the lowest permeability in the whole borehole. This result contradicts the conventional wisdom of a positive correlation between fissures and gas anomalies of He and CH4, implying the anomalous gas may exist in tiny invisible fissures of crystalline rocks.

Then, further investigations must be done to see whether the effects of the tiny fissures on seismic wave velocity are different from macroscopic fractures. The contrast of seismic velocity measuring between gas- or water-saturated cores reveals that the increase of porosity and velocity of S-wave do not often correspond to each other as porosity jumps at the intervals of macroscopic fractures. A careful comparison may discover a rather negative correlation, i.e., the correlation between porosity increase and velocity decrease of S-wave. Based on a comparison of the data, it is found that despite the low porosity of 1% or so of the gneiss samples, P-wave velocity with heat dry gas located below 2250m is reduced by 500-900m/s, about 10% less than that in water-saturated rock samples whereas velocity of S-wave is reduced by 500-800m/s (about 15% less). By thoroughly analyzing the wave velocities measuring of cores, the cause of seismic response to gas anomalies in crystalline rocks can be explained as follows: gas contained in tiny fissures of crystalline rocks can cause a significant decrease of seismic wave velocity (especially the velocity of S-wave) and make a series of seismic responses in seismic wavefield relating to the velocity decrease of S-wave.

Seismic velocity measurements explain a notable seismic response could be induced in gas-filled crystalline rocks. It has be predicated previously by geochemical experiments that the porosity of crystalline rocks in the middle crust increases sharply due to water-rock interaction, and then there would be more probability for natural gas to be concentrated in top of the mid-crust, forming some gas reservoirs owing to the Earth degassing. In such cases, seismic method could be used to explore natural gas reservoirs in the middle crust.

Reference: Zhang R H, Zhang X T, Hu S M, et al. Kinetic experiments of water-rock interaction at high temperatures and high pressures corresponding to the middle crust condition (in Chinese). Acta Petrol Sinica, 2007, 23(11): 2933-2942

Yang Wencai | EurekAlert!
Further information:
http://www.ccsd.cn

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>