Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic response to natural gas anomalies in crystalline rocks

07.11.2008
The research done at the Chinese Academy of Geological Sciences has shown that after geochemical experiments, the porosity of crystalline rocks in the middle crust increases sharply due to water-rock interaction (see ref.).

This research further shows the increased porosity facilitates natural gas concentrations in top of the mid-crust to form some large gas reservoirs, which can be detected using the three-component seismic method. The results are reported in Science in China Ser. D 2008 (No.9 in Chinese and No.12 in English). As drilling machines have reached 12 km-deep now, these gas reservoirs can be practically exploited.

The geological and seismic reflection data of the Chinese continental drilling reveal that the gas anomalies of CH4, CO2, and He occur in the deep crystalline rocks. In the drilling hole, the concentration of CH4 occurs mainly in the interval of 2310 m-3280 m with the peak value of 260 ppm; Notable concentration anomalies of He also occur in the interval ranging between 10 and 46 ppm. The general near-vertical reflection profiles show that strong seismic responses are mainly correlated to ductile shear zones and have rather weak correlation with the location of the gas anomalies. However, after the three-component seismic survey was performed in the drilling site, horizontally converted wave reflectors clearly appear at 2310m-3280m where the main CH4/He anomalies occur. Thus the zone of the gas anomalies could be approximately defined by reflectors of nearly horizontally converted S-wave events.

The measured physical parameters of the cores include porosity, water-permeability, elastic wave velocity, conductivity, and thermal conductivity etc. For the interval with gas anomalies (2310m-3280m), gneiss has the lowest porosity (1% or so) and the lowest permeability in the whole borehole. This result contradicts the conventional wisdom of a positive correlation between fissures and gas anomalies of He and CH4, implying the anomalous gas may exist in tiny invisible fissures of crystalline rocks.

Then, further investigations must be done to see whether the effects of the tiny fissures on seismic wave velocity are different from macroscopic fractures. The contrast of seismic velocity measuring between gas- or water-saturated cores reveals that the increase of porosity and velocity of S-wave do not often correspond to each other as porosity jumps at the intervals of macroscopic fractures. A careful comparison may discover a rather negative correlation, i.e., the correlation between porosity increase and velocity decrease of S-wave. Based on a comparison of the data, it is found that despite the low porosity of 1% or so of the gneiss samples, P-wave velocity with heat dry gas located below 2250m is reduced by 500-900m/s, about 10% less than that in water-saturated rock samples whereas velocity of S-wave is reduced by 500-800m/s (about 15% less). By thoroughly analyzing the wave velocities measuring of cores, the cause of seismic response to gas anomalies in crystalline rocks can be explained as follows: gas contained in tiny fissures of crystalline rocks can cause a significant decrease of seismic wave velocity (especially the velocity of S-wave) and make a series of seismic responses in seismic wavefield relating to the velocity decrease of S-wave.

Seismic velocity measurements explain a notable seismic response could be induced in gas-filled crystalline rocks. It has be predicated previously by geochemical experiments that the porosity of crystalline rocks in the middle crust increases sharply due to water-rock interaction, and then there would be more probability for natural gas to be concentrated in top of the mid-crust, forming some gas reservoirs owing to the Earth degassing. In such cases, seismic method could be used to explore natural gas reservoirs in the middle crust.

Reference: Zhang R H, Zhang X T, Hu S M, et al. Kinetic experiments of water-rock interaction at high temperatures and high pressures corresponding to the middle crust condition (in Chinese). Acta Petrol Sinica, 2007, 23(11): 2933-2942

Yang Wencai | EurekAlert!
Further information:
http://www.ccsd.cn

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>