Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic response to natural gas anomalies in crystalline rocks

07.11.2008
The research done at the Chinese Academy of Geological Sciences has shown that after geochemical experiments, the porosity of crystalline rocks in the middle crust increases sharply due to water-rock interaction (see ref.).

This research further shows the increased porosity facilitates natural gas concentrations in top of the mid-crust to form some large gas reservoirs, which can be detected using the three-component seismic method. The results are reported in Science in China Ser. D 2008 (No.9 in Chinese and No.12 in English). As drilling machines have reached 12 km-deep now, these gas reservoirs can be practically exploited.

The geological and seismic reflection data of the Chinese continental drilling reveal that the gas anomalies of CH4, CO2, and He occur in the deep crystalline rocks. In the drilling hole, the concentration of CH4 occurs mainly in the interval of 2310 m-3280 m with the peak value of 260 ppm; Notable concentration anomalies of He also occur in the interval ranging between 10 and 46 ppm. The general near-vertical reflection profiles show that strong seismic responses are mainly correlated to ductile shear zones and have rather weak correlation with the location of the gas anomalies. However, after the three-component seismic survey was performed in the drilling site, horizontally converted wave reflectors clearly appear at 2310m-3280m where the main CH4/He anomalies occur. Thus the zone of the gas anomalies could be approximately defined by reflectors of nearly horizontally converted S-wave events.

The measured physical parameters of the cores include porosity, water-permeability, elastic wave velocity, conductivity, and thermal conductivity etc. For the interval with gas anomalies (2310m-3280m), gneiss has the lowest porosity (1% or so) and the lowest permeability in the whole borehole. This result contradicts the conventional wisdom of a positive correlation between fissures and gas anomalies of He and CH4, implying the anomalous gas may exist in tiny invisible fissures of crystalline rocks.

Then, further investigations must be done to see whether the effects of the tiny fissures on seismic wave velocity are different from macroscopic fractures. The contrast of seismic velocity measuring between gas- or water-saturated cores reveals that the increase of porosity and velocity of S-wave do not often correspond to each other as porosity jumps at the intervals of macroscopic fractures. A careful comparison may discover a rather negative correlation, i.e., the correlation between porosity increase and velocity decrease of S-wave. Based on a comparison of the data, it is found that despite the low porosity of 1% or so of the gneiss samples, P-wave velocity with heat dry gas located below 2250m is reduced by 500-900m/s, about 10% less than that in water-saturated rock samples whereas velocity of S-wave is reduced by 500-800m/s (about 15% less). By thoroughly analyzing the wave velocities measuring of cores, the cause of seismic response to gas anomalies in crystalline rocks can be explained as follows: gas contained in tiny fissures of crystalline rocks can cause a significant decrease of seismic wave velocity (especially the velocity of S-wave) and make a series of seismic responses in seismic wavefield relating to the velocity decrease of S-wave.

Seismic velocity measurements explain a notable seismic response could be induced in gas-filled crystalline rocks. It has be predicated previously by geochemical experiments that the porosity of crystalline rocks in the middle crust increases sharply due to water-rock interaction, and then there would be more probability for natural gas to be concentrated in top of the mid-crust, forming some gas reservoirs owing to the Earth degassing. In such cases, seismic method could be used to explore natural gas reservoirs in the middle crust.

Reference: Zhang R H, Zhang X T, Hu S M, et al. Kinetic experiments of water-rock interaction at high temperatures and high pressures corresponding to the middle crust condition (in Chinese). Acta Petrol Sinica, 2007, 23(11): 2933-2942

Yang Wencai | EurekAlert!
Further information:
http://www.ccsd.cn

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>