Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seismic Noise Unearths Lost Hurricanes

Seismologists have found a new way to piece together the history of hurricanes in the North Atlantic - by looking back through records of the planet's seismic noise. It's an entirely new way to tap into the rich trove of seismic records, and the strategy might help establish a link between global warming and the frequency or intensity of hurricanes.

"Looking for something like hurricane records in seismology doesn't occur to anybody," said Carl Ebeling, of Northwestern University in Evanston. "It's a strange and wondrous combination."

The research is attempting to address a long-standing debate about whether the warming of sea-surface waters as a result of climate change is producing more frequent or more powerful hurricanes in the North Atlantic. It's a tough question to answer.

Before satellite observations began in the 1960s, weather monitoring was spotty. Ships, planes, and land-based monitoring stations probably missed some hurricanes, which tend to last for about a week or so, Ebeling said. This type of uncertainty poses a problem for scientists, who can’t identify trends until they know what the actual numbers were.

To fill in the historical blanks, Ebeling and colleague Seth Stein are looking to seismic noise, an ever-present background signal that bathes the surface of the Earth. Seismic noise derives its energy from the atmosphere and then gets transmitted through the oceans into the solid earth, where it travels as waves. Seismometers record the noise as very low-amplitude wiggle patterns with much larger, obvious signals that come from earthquakes. Subtle changes in seismic noise frequency and amplitude have long been ignored.

Ebeling and Stein analyzed digital seismograms dating back to the early 90s from two monitoring stations: one in Harvard, Mass., and one in San Juan, Puerto Rico. For this study, the researchers looked at seismograms recorded during known hurricanes in an attempt to see whether patterns produced during hurricanes look predictably different from patterns produced during regular storms or when there are no storms at all.

Their preliminary results suggest that hurricanes do indeed produce recognizable patterns, and the waves generated by hurricanes travel large distances. The Harvard station recorded signals from Hurricane Andrew more than a thousand kilometers away.

"There's definitely something there that shows this can be workable," Ebeling said. "This is something new and interesting."

At least one major hurdle remains before scientists will be able to pull together a complete hurricane history out of the seismic records. For most of the 20th century, seismograms recorded data on rolls of paper. Those records, which contain hundreds of thousands of hours of data, will need to be digitized. Ebeling is looking for an efficient way to do that.

View abstract at

For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.
After the meeting contact:
Carl Ebeling
Earth and Planetary Sciences
Northwestern University
1850 Campus Drive
Evanston, IL 60208-2150, USA
John Rodgers
Dept. of Forestry and Natural Resources
Clemson University
261 Lehotsky Hall
Clemson, SC 29634-0317, USA

Christa Stratton | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>