Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic Noise Unearths Lost Hurricanes

21.10.2009
Seismologists have found a new way to piece together the history of hurricanes in the North Atlantic - by looking back through records of the planet's seismic noise. It's an entirely new way to tap into the rich trove of seismic records, and the strategy might help establish a link between global warming and the frequency or intensity of hurricanes.

"Looking for something like hurricane records in seismology doesn't occur to anybody," said Carl Ebeling, of Northwestern University in Evanston. "It's a strange and wondrous combination."

The research is attempting to address a long-standing debate about whether the warming of sea-surface waters as a result of climate change is producing more frequent or more powerful hurricanes in the North Atlantic. It's a tough question to answer.

Before satellite observations began in the 1960s, weather monitoring was spotty. Ships, planes, and land-based monitoring stations probably missed some hurricanes, which tend to last for about a week or so, Ebeling said. This type of uncertainty poses a problem for scientists, who can’t identify trends until they know what the actual numbers were.

To fill in the historical blanks, Ebeling and colleague Seth Stein are looking to seismic noise, an ever-present background signal that bathes the surface of the Earth. Seismic noise derives its energy from the atmosphere and then gets transmitted through the oceans into the solid earth, where it travels as waves. Seismometers record the noise as very low-amplitude wiggle patterns with much larger, obvious signals that come from earthquakes. Subtle changes in seismic noise frequency and amplitude have long been ignored.

Ebeling and Stein analyzed digital seismograms dating back to the early 90s from two monitoring stations: one in Harvard, Mass., and one in San Juan, Puerto Rico. For this study, the researchers looked at seismograms recorded during known hurricanes in an attempt to see whether patterns produced during hurricanes look predictably different from patterns produced during regular storms or when there are no storms at all.

Their preliminary results suggest that hurricanes do indeed produce recognizable patterns, and the waves generated by hurricanes travel large distances. The Harvard station recorded signals from Hurricane Andrew more than a thousand kilometers away.

"There's definitely something there that shows this can be workable," Ebeling said. "This is something new and interesting."

At least one major hurdle remains before scientists will be able to pull together a complete hurricane history out of the seismic records. For most of the 20th century, seismograms recorded data on rolls of paper. Those records, which contain hundreds of thousands of hours of data, will need to be digitized. Ebeling is looking for an efficient way to do that.

View abstract at http://gsa.confex.com/gsa/2009AM/finalprogram/abstract_161903.htm.

**CONTACT INFORMATION**
For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.
After the meeting contact:
Carl Ebeling
Earth and Planetary Sciences
Northwestern University
1850 Campus Drive
Evanston, IL 60208-2150, USA
carl@earth.northwestern.edu.
John Rodgers
Dept. of Forestry and Natural Resources
Clemson University
261 Lehotsky Hall
Clemson, SC 29634-0317, USA
jrodgers@clemson.edu

Christa Stratton | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>