Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic gap may be filled by an earthquake near Istanbul

11.09.2014

After tracking seismic shifts, researchers say a major quake may occur off the coast of Istanbul

When a segment of a major fault line goes quiet, it can mean one of two things: The "seismic gap" may simply be inactive — the result of two tectonic plates placidly gliding past each other — or the segment may be a source of potential earthquakes, quietly building tension over decades until an inevitable seismic release.

Researchers from MIT and Turkey have found evidence for both types of behavior on different segments of the North Anatolian Fault — one of the most energetic earthquake zones in the world. The fault, similar in scale to California's San Andreas Fault, stretches for about 745 miles across northern Turkey and into the Aegean Sea.

The researchers analyzed 20 years of GPS data along the fault, and determined that the next large earthquake to strike the region will likely occur along a seismic gap beneath the Sea of Marmara, some five miles west of Istanbul. In contrast, the western segment of the seismic gap appears to be moving without producing large earthquakes.

"Istanbul is a large city, and many of the buildings are very old and not built to the highest modern standards compared to, say, southern California," says Michael Floyd, a research scientist in MIT's Department of Earth, Atmospheric and Planetary Sciences. "From an earthquake scientist's perspective, this is a hotspot for potential seismic hazards."

Although it's impossible to pinpoint when such a quake might occur, Floyd says this one could be powerful — on the order of a magnitude 7 temblor, or stronger.

"When people talk about when the next quake will be, what they're really asking is, 'When will it be, to within a few hours, so that I can evacuate?' But earthquakes can't be predicted that way," Floyd says. "Ultimately, for people's safety, we encourage them to be prepared. To be prepared, they need to know what to prepare for — that's where our work can contribute"

Floyd and his colleagues, including Semih Ergintav of the Kandilli Observatory and Earthquake Research Institute in Istanbul and MIT research scientist Robert Reilinger, have published their seismic analysis in the journal Geophysical Research Letters.

In recent decades, major earthquakes have occurred along the North Anatolian Fault in a roughly domino-like fashion, breaking sequentially from east to west. The most recent quake occurred in 1999 in the city of Izmit, just east of Istanbul. The initial shock, which lasted less than a minute, killed thousands. As Istanbul sits at the fault's western end, many scientists have thought the city will be near the epicenter of the next major quake.

To get an idea of exactly where the fault may fracture next, the MIT and Turkish researchers used GPS data to measure the region's ground movement over the last 20 years. The group took data along the fault from about 100 GPS locations, including stations where data are collected continuously and sites where instruments are episodically set up over small markers on the ground, the positions of which can be recorded over time as the Earth slowly shifts.

"By continuously tracking, we can tell which parts of the Earth's crust are moving relative to other parts, and we can see that this fault has relative motion across it at about the rate at which your fingernail grows," Floyd says.

From their ground data, the researchers estimate that, for the most part, the North Anatolian Fault must move at about 25 millimeters — or one inch — per year, sliding quietly or slipping in a series of earthquakes.

As there's currently no way to track the Earth's movement offshore, the group also used fault models to estimate the motion off the Turkish coast. The team identified a segment of the fault under the Sea of Marmara, west of Istanbul, that is essentially stuck, with the "missing" slip accumulating at 10 to 15 millimeters per year. This section — called the Princes' Island segment, for a nearby tourist destination — last experienced an earthquake 250 years ago.

Floyd and colleagues calculate that the Princes' Island segment should have slipped about 8 to 11 feet — but it hasn't. Instead, strain has likely been building along the segment for the last 250 years. If this tension were to break the fault in one cataclysmic earthquake, the Earth could shift by as much as 11 feet within seconds.

Although such accumulated strain may be released in a series of smaller, less hazardous rumbles, Floyd says that given the historical pattern of major quakes along the North Anatolian Fault, it would be reasonable to expect a large earthquake off the coast of Istanbul within the next few decades.

"Earthquakes are not regular or predictable," Floyd says. "They're far more random over the long run, and you can go many lifetimes without experiencing one. But it only takes one to affect many lives. In a location like Istanbul that is known to be subject to large earthquakes, it comes back to the message: Always be prepared."

Abby Abazorius | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: Anatolian GPS Istanbul MIT Massachusetts Seismic earthquake occur strain

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>