Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

See how Arctic sea ice is losing its bulwark against warming summers

31.10.2016

Arctic sea ice, the vast sheath of frozen seawater floating on the Arctic Ocean and its neighboring seas, has been hit with a double whammy over the past decades: as its extent shrunk, the oldest and thickest ice has either thinned or melted away, leaving the sea ice cap more vulnerable to the warming ocean and atmosphere.

"What we've seen over the years is that the older ice is disappearing," said Walt Meier, a sea ice researcher at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "This older, thicker ice is like the bulwark of sea ice: a warm summer will melt all the young, thin ice away but it can't completely get rid of the older ice. But this older ice is becoming weaker because there's less of it and the remaining old ice is more broken up and thinner, so that bulwark is not as good as it used to be."


Arctic sea ice has not only been shrinking in surface area in recent years, it's becoming younger and thinner as well. In this animation, where the ice cover almost looks gelatinous as it pulses through the seasons, cryospheric scientist Dr. Walt Meier of NASA Goddard Space Flight Center describes how the sea ice has undergone fundamental changes during the era of satellite measurements. This video is public domain and along with other supporting visualizations can be downloaded from the Scientific Visualization Studio at: http://svs.gsfc.nasa.gov/4509

Credit: NASA's Goddard Space flight Center/Jefferson Beck

Direct measurements of sea ice thickness are sporadic and incomplete across the Arctic, so scientists have developed estimates of sea ice age and tracked their evolution from 1984 to the present. Now, a new NASA visualization of the age of Arctic sea ice shows how sea ice has been growing and shrinking, spinning, melting in place and drifting out of the Arctic for the past three decades.

"Ice age is a good analog for ice thickness because basically, as ice gets older it gets thicker," Meier said. "This is due to the ice generally growing more in the winter than it melts in the summer."

In the early 2000s, scientists at the University of Colorado developed a way to monitor Arctic sea ice movement and the evolution of its age by using data from a variety of sources, but primarily satellite passive microwave instruments. These instruments gauge brightness temperature: a measure of the microwave energy emitted by sea ice that is influenced by the ice's temperature, salinity, surface texture and the layer of snow on top of the sea ice.

Each floe of sea ice has a characteristic brightness temperature, so the researchers developed an approach that would identify and track ice floes in successive passive microwave images as they moved across the Arctic. The system also uses information from drifting buoys as well as weather data.

"It's like bookkeeping; we're keeping track of sea ice as it moves around, up until it melts in place or leaves the Arctic," said Meier, who is a collaborator of the group at the University of Colorado and the National Snow and Ice Data Center in Boulder, Colorado, the center that currently maintains the Arctic sea ice age data.

Ice in motion

Every year, sea ice forms in the winter and melts in the summer. The sea ice that survives the melt season thickens with each passing year: newly formed ice grows to about 3 to 7 feet of thickness during its first year, while multi-year ice (sea ice that has survived several melt seasons) is about 10 to 13 feet thick. The older and thicker ice is more resistant to melt and less likely to get pushed around by winds or broken up by waves or storms.

The motion of sea ice is not limited to its seasonal expansion and shrinkage: Except for coastal regions where sea ice is attached to the shore, the sea ice cap is in almost constant movement. The primary driver of sea ice movement in the Arctic is wind and there are two major features in the Arctic circulation: the Beaufort Gyre, a clockwise ice circulation that makes ice spin like a wheel in the Beaufort Sea, north of Alaska, and the Transpolar Drift Stream, which transports ice from Siberia's coast toward the Fram Strait east of Greenland, where the ice exits the Arctic basin and melts in the warmer waters of the Atlantic Ocean.

"On a week-to-week basis, there are weather systems that come through, so the ice isn't moving at a constant rate: sometimes the Beaufort Gyre reverses or breaks down for a couple weeks or so, the Transpolar Drift Stream shifts in its direction ... but the overall pattern is this one," Meier said. "Then the spring melt starts and the ice shrinks back, disappearing from the peripheral seas."

The new animation shows two main bursts of thick ice loss: the first one, starting in 1989 and lasting a few years, was due to a switch in the Arctic Oscillation, an atmospheric circulation pattern, which shrunk the Beaufort Gyre and enhanced the Transpolar Drift Stream, flushing more sea ice than usual out of the Arctic. The second peak in ice loss started in the mid-2000s.

"Unlike in the 1980s, it's not so much as ice being flushed out -though that's still going on too," Meier said. "What's happening now more is that the old ice is melting within the Arctic Ocean during the summertime. One of the reasons is that the multiyear ice used to be a pretty consolidated ice pack and now we're seeing relatively smaller chunks of old ice interspersed with younger ice. These isolated floes of thicker ice are much easier to melt."

"We've lost most of the older ice: In the 1980s, multiyear ice made up 20 percent of the sea ice cover. Now it's only about 3 percent," Meier said. "The older ice was like the insurance policy of the Arctic sea ice pack: as we lose it, the likelihood for a largely ice-free summer in the Arctic increases."

Media Contact

Patrick Lynch
patrick.lynch@nasa.gov
301-286-2102

 @NASAGoddard

http://www.nasa.gov/goddard 

Patrick Lynch | EurekAlert!
Further information:
http://www.nasa.gov/feature/goddard/2016/arctic-sea-ice-is-losing-its-bulwark-against-warming-summers

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>