Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sedimentary records link Himalayan erosion rates and monsoon intensity through time

Throughout history, the changing fortunes of human societies in Asia have been linked to variations in the precipitation resulting from seasonal monsoons. A new paper published in the British journal Nature Geoscience suggests that variations in monsoon climate over longer time scales also influenced the evolution of the world’s highest mountain chain, the Himalaya.

The climate over much of Asia is dominated by seasonal winds that carry moist air over the Pacific Ocean into East Asia and over the Indian Ocean into South Asia. The East and South Asian monsoons are responsible for most of the rainfall in these regions. Although the time when these monsoon patterns were first established is unknown, many lines of evidence suggest that they first came about at least 24 million years ago.

The new study uses geochemical data from an Ocean Drilling Project sediment core extracted from the seafloor of the South China Sea to establish a record of the East Asian monsoon climate over that time interval.

“Sediments in this core were eroded from the drainage area of the Pearl River system in China, and their chemistry records the relative intensity through time of chemical weathering in an area that received the bulk of its precipitation from East Asian monsoon storms,” explains Peter Clift, lead author of the study and a professor of geology and petroleum geology at the University of Aberdeen in Scotland.

Many researchers believe that a geologically “abrupt” uplift of the Tibetan Plateau – the largest high-altitude region on Earth, with an average elevation of more than 4,000 meters (13,000 feet) – at 8 to10 million years ago caused a major intensification in the monsoon climate.

“South China Sea data do not support that interpretation,” says Kip Hodges, a co-author of the paper and director of the School of Earth and Space Exploration in the College of Liberal Arts and Sciences at Arizona State University. “Other than a brief drop between about 17 and 15 million years ago, the pattern in the core suggests a steady increase in East Asian monsoon intensity from 23 to 10 million years ago, followed by a steady weakening until about 4 million years ago. After that, the intensity began to increase once more. The implication is that either the development of the plateau was not as abrupt as we might have thought, or that an abrupt uplift of the plateau at 8 to 10 million years caused a change in precipitation patterns that was not recorded in East Asia.”

Another controversy surrounds the degree of coupling between the South and East Asian monsoons. Could one have varied in intensity differently from the other?

The team compared the South China Sea record with less-complete sedimentary records from the Arabian Sea and Bay of Bengal – which contain sediments that were eroded from the Himalaya, where the principal rainfall comes from South Asian monsoon storms – to argue for a linkage between the two monsoon systems over most of the past 23 million years.

“The really exciting moment in this research came when we began to compare patterns from one record to another and found broad agreement,” says Clift.

The most interesting correlation was found when the team compared the sedimentary records to cooling age patterns in the Himalaya. Hodges and his students have spent years using isotopic dating techniques to determine the cooling ages of thousands of bedrock and sediment samples from all over the Himalaya.

“Most people are familiar with the use of such techniques to determine the crystallization ages of minerals and rocks,” says Hodges. “They also can be used to determine when a mineral cooled through a certain temperature. The principal mechanism by which samples cool in mountainous regions is erosion, so a high frequency of minerals with the same cooling age generally means a high rate of erosion at that time.”

Compilations of the cooling ages obtained by Hodges’ group and other researchers show that the periods of high East Asian monsoon intensity matched well with high frequencies of cooling ages, implying a relationship between monsoon intensity and erosion in the Himalaya.

“While it makes sense intuitively that heavy rainfall should be correlated with more aggressive erosion, it is important to see such direct evidence of the coupling between the processes that define the evolution of mountain ranges and climatic processes,” Hodges explains. “It implies, once again, that Earth is a complex system, and we cannot begin to fully understand mountain building without appreciating the roles of the hydrosphere and atmosphere in the evolution of mountain ranges.”

But Hodges cautions that the results of this study are suggestive.

“It is important to confirm our interpretations by generating a more comprehensive cooling age dataset from regions of the Himalaya that have not yet been studied because of logistical constraints or political instability.”

Adds Clift, “We really need more complete offshore sedimentary records from the Arabian Sea and Bengal Fan to make a solid case for linkages between the South and East Asian monsoon systems.”

Hodges’ work on this study was funded by the U.S. National Science Foundation. Other co-authors of the paper include D. Heslop of the Universität Bremen, Germany, R. Hannigan of Arkansas State University, and H. Van Long of the University of Aberdeen.

Nicole Staab | alfa
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>