Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sediment supply drives floodplain evolution in Amazon Basin

03.11.2014

A new study of the Amazon River basin shows lowland rivers that carry large volumes of sediment meander more across floodplains and create more oxbow lakes than rivers that carry less sediment.

The findings have implication for the Amazonian river system, which may be significantly altered by proposed mega-dams that would disrupt sediment supplies.

Researchers from Cardiff University's School of Earth and Ocean Sciences examined 20 reaches within the Amazon Basin from Landsat imagery spanning nearly 20 years (1985 to 2013).

They found rivers transporting larger amounts of sediment migrated more, and noted that channel movement did not depend on either the slope of the channel or the river discharge.

The research gives scientists insight into the contrasting behavioural properties of rivers where sediment is an imposed variable – e.g. resulting from glacial, volcanic, or human activity – and rivers were the main sediment supply is from local bank erosion.

Dr José Constantine, Lecturer in Earth Sciences at Cardiff University's School of Earth & Ocean Sciences and lead author of the paper said: "We found that the speed at which the meanders migrated for each of the rivers studied depended on the river's supply of sand and silt.

The meanders of rivers carrying more sediment migrated faster than those carrying less sediment, and were also more frequently cut off and abandoned to form U-shaped lakes. If sediment loads are reduced — by a dam, for example — meander migration is expected to slow, and thus the reshaping of the floodplain environment is affected."

Notes to Editors

The paper, 'Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin', will be published on Nature Geoscience's website on Sunday 02 November at 1800 London time at: http://dx.doi.org/10.1038/ngeo2282

The full letter to Nature Geoscience is attached, together with an image showing the sinuosity of reaches studied in the Amazon Basin.

Academic contacts

Dr Jose Constantine, Lecturer in Earth Sciences, School of Earth & Ocean Sciences, Cardiff University: Tel: +44 (0)29 208 70642 mobile +44 (0)7508 046740; ConstantineJA@cardiff.ac.uk

Dr Eli Lazarus, Lecturer in Earth Sciences, School of Earth & Ocean Sciences, Cardiff University: Tel: +44 (0)29 208 75563 ; mobile: +44 (0)7580 330 792; LazarusED@cf.ac.uk @envidynxlab

Media contact

Heath Jeffries, Communications Manager, Cardiff University: +44 (0)2920 870917; mobile +44 (0) 7908 824029; jeffrieshv1@cardiff.ac.uk

Heath Jeffries | EurekAlert!
Further information:
http://www.cardiff.ac.uk/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>