Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Seasonal Hurricane Forecasting Model

17.07.2009
Scientists at The Florida State University’s Center for Ocean-Atmospheric Prediction Studies (COAPS) have developed a new computer model that they hope will predict with unprecedented accuracy how many hurricanes will occur in a given season.

After about five years developing and assessing the model, Associate Scholar Scientist Tim LaRow and his COAPS colleagues are putting the system to the test this year with their first-ever hurricane forecast. The COAPS model is one of only a handful of so–called “dynamical models” in the world being used to study seasonal hurricane activity.

The COAPS model has predicted a below-average season in the Atlantic Ocean, with a mean of eight named storms and four hurricanes based partially on emerging El Nino conditions. During an El Nino, the warmer ocean temperatures in the tropical eastern Pacific tend to suppress hurricane activity in the Atlantic. The historical seasonal average is 11 tropical storms and six hurricanes.

“Making a real-time forecast for the first time is always very interesting and a very good test of the model,” LaRow said. “The hard part is in the waiting to see how the model verifies.”

LaRow and COAPS researchers Lydia Stefanova and Dong-Wook Shin issued their forecast on June 1, the official start of the six-month hurricane season. The tropics traditionally don’t become active until the early fall months, so it’s too early to tell if the forecast is on track. However, the researchers have good reason to feel confident.

Before making this year’s prediction, they used the model to perform 20 years of re-forecasts, or hindcasts, using the sea surface temperatures determined by the National Oceanic and Atmospheric Administration on June 1 of every year from 1986 to 2005. They found a very high correlation between the model’s predictions of the number and intensity of tropical cyclones and what actually occurred during those years.

In addition, the model outperformed many statistical and other dynamical models, LaRow said. Statistical models use statistical relationships between oceanic and atmospheric variables to make a forecast, while dynamical models, such as the COAPS model, require major computing resources in order to make trillions of calculations using the equations of motion along with the best physical understanding of the atmosphere.

The COAPS model uses the university’s high-performance computer to synthesize massive amounts of information including atmospheric, ocean and land data. A key component of the COAPS model is NOAA’s forecast of sea surface temperatures. But COAPS researchers continue to study their own model in an effort to better understand the relationship between sea surface temperatures and climate predictability.

“All models are unique, and what makes them unique is the physics inside them,” LaRow said. “How and why our model’s collection of physical processes captures the year-to-year variability so well needs to be better understood. This research will lead to even greater seasonal forecasting skill in the future.”

In 2006, COAPS received a $6.2 million, five-year grant from NOAA that has been used, in part, to support the development of this model.

Tim LaRow | Newswise Science News
Further information:
http://www.fsu.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>