Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seafloor Fossils Provide Clues on Climate Change

05.11.2009
Deep under the sea, a fossil the size of a sand grain is nestled among a billion of its closest dead relatives. Known as foraminifera, these complex little shells of calcium carbonate can tell you the sea level, temperature, and ocean conditions of Earth millions of years ago. That is, if you know what to look for.

Assistant Professor of Earth and Environmental Sciences at Rensselaer Polytechnic Institute Miriam Katz has spent the past two decades studying these ancient, deep-sea fossils to reconstruct the climates of Earth up to 250 million years ago.

Through ice ages and greenhouse climates, Katz has been able to piece together oxygen, carbon, and faunal data to paint a portrait of how, when, and why our climate has changed so drastically over geologic history. In addition, her investigations into the deep past of Earth have important implications for understanding and tracking the potential drastic repercussions of modern, human-induced climate change.

“There is a saying among scientists in my field that ‘the past is a window on the future,’ ” Katz said. “By reconstructing the climates of the past, particularly those where we see massive and rapid changes in the climate, we can provide a science-based means to explore or predict possible system responses to the current climate change.”

While her work requires a lot of time in the laboratory, Katz has spent nearly two years at sea on seven different ocean voyages around the world to drill for foraminifera as part of the Integrated Ocean Drilling Program (IODP), an international marine research effort that explores the Earth’s history and structure by looking at seafloor sediments and rocks. During each two-month IODP excursion, Katz and the other scientists on board never set foot on land and spend hours poking through the millions of layers of sediment, trapped gases, fossils, and trace elements found in huge cores drilled from deep under the seafloor.

Just a few inches in diameter, each core is painstakingly drilled and removed from the seafloor. From top to bottom, the core provides a reverse chronology of the various organisms, sediments, and elements that were found on Earth throughout history. Unlike cores from sedimentary layers from the continents that are quickly destroyed by the forces of plate tectonics, wind, and water, these rarely disturbed ocean sediment cores can provide records up to 180 million years ago as new layers of sediment bury and preserve those of the past.

Katz is most interested in the foraminifera found in the cores. The foraminifera she studies live on or just below the seafloor. When they die, their hard shells are incorporated in the surrounding sediments and buried over time in a nearly uniform layer.

The assemblages of foraminifera in each layer can provide valuable information on the climate of that time. “Some species are only found in certain environments, such as in warm water or in shallow, tidal areas,” Katz said. “By piecing together the species assemblages that are found in a given area during the given time period, we can reconstruct the sea level and ocean and climate conditions of that period based on our knowledge of each foraminiferal species.”

In addition to the specific type of foraminifera seen in each layer, valuable information can also be gathered by looking at variations in the chemical structure of the fossilized calcium carbonate (CaCO3) shell seen in the various layers. During their life, the foraminiferal shells are formed from the elements found in the seas that they lived in. The ratios of various isotopes of the elements carbon and oxygen found in foraminiferal shells at different times in Earth’s history provide important information needed to reconstruct the climate and ocean waters that surrounded them during their short lives millions of years ago.

In the case of oxygen (O), the ratio between isotopes 18O and 16O tells scientists how much water is trapped in glacial ice, providing important clues about temperature and the size of the ancient continental ice sheets. Carbon (C) in the shells can be analyzed for either 12C or 13C isotopes. Plants prefer to incorporate lighter 12C during photosynthesis, increasing the ratio of 13C to 12C in foraminifera when plant and algae production is high. This carbon data provides clues on the types and amounts of vegetation at various times as well as ocean circulation, according to Katz.

Gathering this information from cores has allowed Katz to develop important theories on one of the most recent and dramatic climate change events that has occurred in recent geologic history – the transition from the greenhouse climate of the Eocene epoch to the “icehouse” or glacial conditions of the Oligocene epoch approximately 33.5 million years ago.

“The boundary between the late Eocene to the early Oligocene is a striking example of rapid climate change that we can look to in Earth’s past,” Katz said. “Information from this period can provide us with important information on how rapid changes in temperature can significantly impact ice volume, sea level, and the evolution of life on Earth.”

Katz has used oxygen and carbon isotopes as well as the ratio of magnesium to calcium within foraminifera from this period to reconstruct the changes that occurred as the climate rapidly cooled. Along with her research colleagues, she has shown that ice sheets at the end of the transition were approximately 25 percent larger than today, causing a decrease in sea level of approximately 105 meters.

Her research also reaches even further back to reconstruct conditions earlier in Earth’s history. In particular, she took part in a study of atmospheric oxygen and carbon dioxide concentrations since the Jurassic period 205 million years ago. The group has found that oxygen levels doubled in the short period of time from the Jurassic period to the Eocene epoch (~150 million years ago), providing a climate with just enough oxygen for placental mammals to develop.

Katz joined Rensselaer in 2008 from Rutgers University.

More information on her research can be found at: http://www.rpi.edu/~katzm/. More information on the Integrated Ocean Drilling Program can be found at http://www.iodp-usio.org/.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu
http://www.iodp-usio.org/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>