Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea level variations escalating along eastern Gulf of Mexico coast

30.01.2014
Around the globe, sea levels typically rise a little in summer and fall again in winter.

Now, a new study shows that, from the Florida Keys to southern Alabama, those fluctuations have been intensifying over the past 20 years. Summer peaks have been getting higher and winter troughs dipping lower, potentially increasing flooding from hurricanes and stressing delicate ecosystems, the researchers report.


Sunset Beach on Treasure Island in St. Petersburg, Florida, during Tropical Storm Andrea in June 2013. Increases in summer sea water levels over the past two decades along the eastern Gulf Coast may be boosting storm surge heights, causing more erosion on beaches like this one, according to a new study.
Credit: Thomas Wahl

The additional summer increase in sea levels over the past two decades means storm surges can rise higher than previously thought, increasing how much sea level rise contributes to the flooding risk from hurricanes, according to Thomas Wahl, a postdoctoral researcher from the University of Siegen in Germany who is working at the University of South Florida in St. Petersburg and lead author of the study.

Global sea levels rose by about 5 centimeters (2 inches) from 1993 to 2011 and the newfound trend of summer sea level rise has added approximately 5 centimeters on top of that in the eastern Gulf, the research team reports. Wahl and colleagues from Florida and England published their study last week in Geophysical Research Letters, a journal of the American Geophysical Union.

Conversely, an increasingly downward, winter sea level trend along the eastern Gulf Coast has reduced the flood risk from winter storm surges. At the same time, the growing gap in the region between summer and winter sea levels might be disrupting coastal ecosystems adapted to what was once a relatively stable difference between the seasonal sea levels, Wahl said.

The team studied the entire U.S. Gulf Coast but found the trend toward a greater summer-winter difference only along eastern Gulf shores. Seasonal sea levels in the eastern Gulf of Mexico followed a steady cycle from the beginning of the 1900s to the 1990s, increasing in summer and dropping in winter by roughly the same amount year after year. But, starting in the 1990s, sea levels have gotten both higher in the summer and lower in the winter in the eastern Gulf, causing a significant amplification of the annual cycle, according to the study.

The new work is the first to look at the changes to the sea level cycle for the entire Gulf Coast region in the United States and the first to encounter such a trend, according to Wahl. “This increase over a period of almost 20 years is not found elsewhere in the world,” he said.

Wahl and his colleagues discovered the trend in data from a set of 13 tide gauges stretching from Key West at the tip of Florida to Port Isabel on the Texas coast. Nearly all the tide gauges in the eastern Gulf of Mexico, from Key West to Dauphin Island off the coast of Alabama, showed a significant change in sea level cycle from the 1990s onwards. The change in the sea level cycle was not observed in gauges in the western part of the Gulf, stretching from the Louisiana coast down to the Texas border with Mexico.

The 20-year increase in the annual amplitude, or difference between the high summer levels and low winter levels, was 21 percent on average and as high as 30 percent in some locations, according to the study.

For example, in Key West, the annual amplitude of the sea level cycle for the most recent five-year window was 12.4 centimeters (4.9 inches), 4.5 centimeters (1.8 inches) higher than the average amplitude before 1993, when the change in the seasonal sea level cycle started.

In 2013, when Wahl came to Florida on a fellowship to study the Gulf, he started by looking at the tide gauge record in St. Petersburg. The surprise of seeing a significant increase there in the seasonal cycle during the last few years led him to examine the cycle of the entire U.S. Gulf Coast in the past century.

Although centimeter increases may seem small compared to storm surges measured in meters, the increase means smaller surges have the potential to inundate low-lying areas and cause erosion, Wahl explained. “These indirect effects on storm surges in addition to the global sea level rise are often ignored,” he said.

On the other hand, the decline in sea levels in the winter that was observed in the eastern Gulf reduces the flood risk associated with winter storm surges. However, changes in sea levels in the winter could throw off, for example, the salt balance in sensitive coastal wetlands, Wahl said.

“Very sensitive ecosystems along the Gulf coast depend on the seasonal cycle,” he said. “If there are significant changes in the seasonal cycle then this very likely has an effect” on these ecosystems.

Significant changes in the seasonal cycle might also affect oil spills, although the researchers did not look at this effect, Wahl said. The changes in the seasonal cycle could alter the tides and associated currents, which could in turn influence the mixing of the oil and when it reached land, although the impact would likely be small, he noted.

Unlike global sea level rise, which is driven by temperature and is often cited as an effect of climate change, the annual sea level cycle is driven by a variety of local factors including wind, precipitation, sea level pressure and temperature. The annual cycle varies from region to region, and, until recently, was thought to be constant from year to year. Wahl said it has only been in the past few years that scientists around the world have begun looking at possible changes in regional sea level cycles including in the Baltic Sea, Mediterranean Sea, Chesapeake Bay and the Caribbean.

Coastal engineers need information about baseline sea levels in order to build sea walls to protect coastal communities, said Philip Woodworth, a scientist at the National Oceanography Centre in Southampton in the United Kingdom, who did not contribute to the study.

“A change in the baseline of 5 centimeters could be an important factor,” he said.

Wahl said the changes he and his co-authors saw in the seasonal cycle in the eastern Gulf are driven by changes in air temperature and atmospheric sea level pressure over the past two decades. The researchers found that since 1990, summers have been getting warmer and winters have been getting colder in the region. Atmospheric sea level pressure, which also fluctuates with the seasons, declined more in the summer and increased more in the winter after 1990.

Warmer temperatures and lower sea level pressure in the summer led to the higher water levels being seen in the eastern Gulf, while the lower winter sea levels were driven by the colder temperatures and higher pressure seen during that season, according to the study.

Title
“Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century”
Authors:
Thomas Wahl, College of Marine Science, University of South Florida, St. Petersburg, FL, USA; and Research Centre Siegen — FoKoS, University of Siegen, Siegen, Germany;

Francisco M. Calafat, College of Marine Science, University of South Florida, St. Petersburg, FL, USA; and National Oceanography Centre, Southampton, UK;

Mark E. Luther, College of Marine Science, University of South Florida, St. Petersburg, FL, USA.

Contact information for the authors:
Thomas Wahl, +1 (727) 488-4739, Thomas.Wahl@uni-siegen.de
AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Media contacts
Peter Weiss
Public Information Manager
Phone: +1 202 777 7507
E-mail: Pweiss@agu.org
Joan Buhrman
Strategic Communications Manager
Phone: +1 202 777 7509
E-mail: JBuhrman@agu.org
Mary Catherine Adams
Public Information Specialist
Phone: +1 202 777 7530
E-mail: MCAdams@agu.org
Nanci Bompey
Public Information Specialist
Phone: +1 202 777 7524
E-mail: NBompey@agu.org
Phone: +1 (800) 966 2481
(Toll free in North America)
Fax: +1 202 328 0566

About AGU
AGU galvanizes a community of Earth and space scientists that collaboratively advances and communicates science and its power to ensure a sustainable future.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://news.agu.org/press-release/sea-level-variations-escalating-along-eastern-gulf-of-mexico-coast/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>