Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea level rise could be worse than anticipated

06.02.2009
If global warming some day causes the West Antarctic Ice Sheet to collapse, as many experts believe it could, the resulting sea level rise in much of the United States and other parts of the world would be significantly higher than is currently projected, a new study concludes.

The catastrophic increase in sea level, already projected to average between 16 and 17 feet around the world, would be almost 21 feet in such places as Washington, D.C., scientists say, putting it largely underwater. Many coastal areas would be devastated. Much of Southern Florida would disappear.

The report will be published Friday in the journal Science, by researchers from Oregon State University and the University of Toronto. The research was funded by the National Science Foundation and other agencies from the U.S. and Canada.

"We aren't suggesting that a collapse of the West Antarctic Ice Sheet is imminent," said Peter Clark, a professor of geosciences at Oregon State University. "But these findings do suggest that if you are planning for sea level rise, you had better plan a little higher."

The Intergovernmental Panel on Climate Change has estimated that a collapse of this ice sheet would raise sea levels around the world by about 16.5 feet, on average, and that figure is still widely used. However, that theoretical average does not consider several key forces, such as gravity, changes in the Earth's rotation or a rebound of the land on which the massive glacier now rests, scientists say in the new study.

Right now, this ice sheet has a huge mass, towering more than 6,000 feet above sea level over a large section of Antarctica. This mass is sufficient to exert a substantial gravitational attraction, researchers say, pulling water toward it – much as the gravitational forces of the sun and moon cause the constant movement of water on Earth commonly known as tides.

"A study was done more than 30 years ago pointing out this gravitational effect, but for some reason it became virtually ignored," Clark said. "People forgot about it when developing their sea level projections for the future."

And aside from incorporating the gravitational effect, the new study adds further wrinkles to the calculation – the weight of the ice forcing down the land mass on which it sits, and also affecting the orientation of the Earth's spin. When the ice is removed, it appears the underlying land would rebound, and the Earth's axis of rotation defined by the North and South Pole would actually shift about one-third of a mile, also affecting the sea level at various points.

When these forces are all taken into calculation, the sea level anywhere near Antarctica would actually fall, the report concludes, while many other areas, mostly in the Northern Hemisphere, would go up.

If the West Antarctic Ice Sheet completely melted, the East Coast of North America would experience sea levels more than four feet higher than had been previously predicted – almost 21 feet - and the West Coast, as well as Miami, Fla., would be about a foot higher than that. Most of Europe would have seas about 18 feet higher.

"If this did happen, there would also be many other impacts that go far beyond sea level increase, including much higher rates of coastal erosion, greater damage from major storm events, problems with ground water salinization, and other issues," Clark said. "And there could be correlated impacts on other glaciers and ice sheets in coastal areas that could tend to destabilize them as well."

It's still unclear, Clark said, when or if a breakup of the West Antarctic Ice Sheet might occur, or how fast it could happen. It may not happen for hundreds of years, he said, and even then it may not melt in its entirety. Research should continue to better understand the forces at work, he said.

"However, these same effects apply to any amount of melting that may occur from West Antarctica," Clark said. "So many coastal areas need to plan for greater sea level rise than they may have expected."

A significant part of the concern is that much of the base of this huge ice mass actually sits below sea level, forced down to the bedrock by the sheer weight of the ice above it. Its edges flow out into floating ice shelves, including the huge Ross Ice Shelf and Ronne Ice Shelf. This topography makes it "inherently unstable," Clark said.

"There is widespread concern that the West Antarctic Ice Sheet, which is characterized by extensive marine-based sectors, may be prone to collapse in a warming world," the researchers wrote in their report.

Peter Clark | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>