Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea-level rise too big to be pumped away

10.03.2016

Future sea-level rise is a problem probably too big to be solved even by unprecedented geo-engineering such as pumping water masses onto the Antarctic continent. The idea has been investigated by scientists at the Potsdam Institute for Climate Impact. While the pumped water would certainly freeze to solid ice, the weight of it would speed up the ice-flow into the ocean at the Antarctic coast. To store the water for a millenium, it would have to be pumped at least 700 kilometer inland, the team found. Overall that would require more than one tenth of the present annual global energy supply to balance the current rate of sea-level rise.

“We explored a way to at least delay the rise of sea level we can no longer avoid by even the strictest climate-change mitigation strategies. This is estimated to reach about 40 cm by the end of the century,” says lead-author Katja Frieler.


Waves rolling towards the shore. Photo: thinkstock

“Our approach is definitely extreme, but so is the challenge of sea-level rise.” Burning fossil fuels leads to greenhouse-gas emissions that drive up global temperatures. Consequently, the thermal expansion of ocean water and the melting of glaciers and ice-sheets slowly raise sea levels, which will continue for millennia. Under unabated warming, sea level rise may exceed 130 centimeters by 2100.

+++Sacrificing Antarctica for saving Bangladesh?+++

“This is huge. Local adaptation, for instance building dikes, will not be physically possible or economically feasible everywhere,” Frieler says. “Protection may depend on your economic situation – so New York might be saved, but sadly not Bangladesh, and this clearly raises an equity issue,” she adds.

“Hence the interest in a universal protection measure. We wanted to check whether sacrificing the uninhabited Antarctic region might theoretically enable us to save populated shores around the world.” Rising oceans are already increasing storm surge risks, threatening millions of people worldwide, and in the long run can redraw the planet’s coastlines.

The scientists addressed the problem from an ice-dynamics perspective, using state-of-the-art computer simulations of Antarctica. Since the ice is continually moving, ocean water put on its surface can only delay sea-level rise – and if it is placed too close to the coast, ice-sheet mass loss and thus sea-level rise after some time could even increase, they found. As a consequence the water has to be pumped a long way inland onto the ice sheet.

+++“Even if this was feasible, it would only buy time”+++

The Antarctic ice sheet is up to 4000 meters high, and that would mean an inconceivable engineering effort. Pumping so much water that high up onto the ice sheet requires enormous amounts of energy. Antarctica is very windy, so the power for the pumping could in principle be generated by wind turbines – yet this would require building roughly 850.000 wind-energy plants onto the ice continent. The costs are expected to be much higher than those associated with local adaptation in other studies, though these measures by definition are limited in scope and scale, the scientists state.

“The magnitude of sea-level rise is so enormous, it turns out it is unlikely that any engineering approach imaginable can mitigate it,” concludes co-author Anders Levermann, head of Global Adaptation Strategies at PIK and scientist at Columbia University’s Lamont Doherty Earth Observatory. “Even if this was feasible, it would only buy time – when we stop the pumping one day, additional discharge from Antarctica will increase the rate of sea-level rise even beyond the warming-induced rate. This would mean putting another sea-level debt onto future generations.” Also, the most sensitive coastal ecosystems of Antarctica would of course be seriously affected by this measure.

+++Greenhouse-gas reductions, local coastal protection, and abandonment+++

If possible at all, delaying the rise by storing water on Antarctica would only show significant effects in a scenario of ambitious climate policy, strictly limiting global warming. “If we’d continue to do business as usual and churn out emissions,” says Levermann, “not even such an immense macro-adaptation project as storing water on Antarctica would suffice to limit long-term sea-level rise – more than 50 meters in the very long term without climate change mitigation. So either way, rapid greenhouse-gas emission reductions are indispensable if sea-level rise is to be kept manageable. In any way substantial investment into long-term local coastal protection will be required if we want to avoid a stepwise abandonment of coastal areas. ”

Article: Frieler, K., Mengel, M., Levermann, A. (2016): Delaying future sea-level rise by storing water in
Antarctica. Earth System Dynamics

Weblink to the article once it is published: http://www.earth-syst-dynam.net/

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de 

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>