Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea-level rise too big to be pumped away

10.03.2016

Future sea-level rise is a problem probably too big to be solved even by unprecedented geo-engineering such as pumping water masses onto the Antarctic continent. The idea has been investigated by scientists at the Potsdam Institute for Climate Impact. While the pumped water would certainly freeze to solid ice, the weight of it would speed up the ice-flow into the ocean at the Antarctic coast. To store the water for a millenium, it would have to be pumped at least 700 kilometer inland, the team found. Overall that would require more than one tenth of the present annual global energy supply to balance the current rate of sea-level rise.

“We explored a way to at least delay the rise of sea level we can no longer avoid by even the strictest climate-change mitigation strategies. This is estimated to reach about 40 cm by the end of the century,” says lead-author Katja Frieler.


Waves rolling towards the shore. Photo: thinkstock

“Our approach is definitely extreme, but so is the challenge of sea-level rise.” Burning fossil fuels leads to greenhouse-gas emissions that drive up global temperatures. Consequently, the thermal expansion of ocean water and the melting of glaciers and ice-sheets slowly raise sea levels, which will continue for millennia. Under unabated warming, sea level rise may exceed 130 centimeters by 2100.

+++Sacrificing Antarctica for saving Bangladesh?+++

“This is huge. Local adaptation, for instance building dikes, will not be physically possible or economically feasible everywhere,” Frieler says. “Protection may depend on your economic situation – so New York might be saved, but sadly not Bangladesh, and this clearly raises an equity issue,” she adds.

“Hence the interest in a universal protection measure. We wanted to check whether sacrificing the uninhabited Antarctic region might theoretically enable us to save populated shores around the world.” Rising oceans are already increasing storm surge risks, threatening millions of people worldwide, and in the long run can redraw the planet’s coastlines.

The scientists addressed the problem from an ice-dynamics perspective, using state-of-the-art computer simulations of Antarctica. Since the ice is continually moving, ocean water put on its surface can only delay sea-level rise – and if it is placed too close to the coast, ice-sheet mass loss and thus sea-level rise after some time could even increase, they found. As a consequence the water has to be pumped a long way inland onto the ice sheet.

+++“Even if this was feasible, it would only buy time”+++

The Antarctic ice sheet is up to 4000 meters high, and that would mean an inconceivable engineering effort. Pumping so much water that high up onto the ice sheet requires enormous amounts of energy. Antarctica is very windy, so the power for the pumping could in principle be generated by wind turbines – yet this would require building roughly 850.000 wind-energy plants onto the ice continent. The costs are expected to be much higher than those associated with local adaptation in other studies, though these measures by definition are limited in scope and scale, the scientists state.

“The magnitude of sea-level rise is so enormous, it turns out it is unlikely that any engineering approach imaginable can mitigate it,” concludes co-author Anders Levermann, head of Global Adaptation Strategies at PIK and scientist at Columbia University’s Lamont Doherty Earth Observatory. “Even if this was feasible, it would only buy time – when we stop the pumping one day, additional discharge from Antarctica will increase the rate of sea-level rise even beyond the warming-induced rate. This would mean putting another sea-level debt onto future generations.” Also, the most sensitive coastal ecosystems of Antarctica would of course be seriously affected by this measure.

+++Greenhouse-gas reductions, local coastal protection, and abandonment+++

If possible at all, delaying the rise by storing water on Antarctica would only show significant effects in a scenario of ambitious climate policy, strictly limiting global warming. “If we’d continue to do business as usual and churn out emissions,” says Levermann, “not even such an immense macro-adaptation project as storing water on Antarctica would suffice to limit long-term sea-level rise – more than 50 meters in the very long term without climate change mitigation. So either way, rapid greenhouse-gas emission reductions are indispensable if sea-level rise is to be kept manageable. In any way substantial investment into long-term local coastal protection will be required if we want to avoid a stepwise abandonment of coastal areas. ”

Article: Frieler, K., Mengel, M., Levermann, A. (2016): Delaying future sea-level rise by storing water in
Antarctica. Earth System Dynamics

Weblink to the article once it is published: http://www.earth-syst-dynam.net/

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de 

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>