Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea level: one third of its rise comes from melting mountain glaciers

17.05.2013
About 99% of the world’s land ice is stored in the huge ice sheets of Antarctica and Greenland, while only 1% is contained in glaciers.

However, the meltwater of glaciers contributed almost as much to the rise in sea level in the period 2003 to 2009 as the two ice sheets: about one third. This is one of the results of an international study with the involvement of geographers from the University of Zurich.


Meltwater pounded at surface in accumulation zone, Columbia Glacier, Alaska, July 2008
Picture: W. Tad Pfeffer

How much all glaciers contribute to global sea-level rise has never been calculated before with this accuracy. An international group of researchers involving two geographers from the University of Zurich has confirmed that melting of glaciers caused about one third of the observed sea-level rise, while the ice sheets and thermal expansion of sea water account for one third each.

So far, estimates on the contribution of glaciers have differed substantially. Now 16 scientists from nine countries have compared the data from traditional measurements on the ground with satellite data from the NASA missions ICESat (Ice, Cloud and land Elevation Satellite) and GRACE (Gravity Recovery and Climate Experiment).

Combined with a glacier inventory that is available globally for the first time, the researchers were able to determine the glacier mass changes all over the world much more accurately than before. «The extrapolations of local field measurements to large regions and entire mountain ranges traditionally applied sometimes overestimated the ice loss», describes UZH geographer Frank Paul the findings from the satellite measurements. And his fellow colleague Tobias Bolch adds: «We are well aware of the weaknesses of the individual satellite methods. However, in highly glacierized regions the results obtained using the two different methods agree well. With the mix of methods that have now been tested and applied, we have come a major step closer to determining glacier mass loss with higher precision.»

Earlier estimates should be corrected
The results show that almost all glacier regions lost mass in the years 2003 to 2009, most of all in Arctic Canada, Alaska, coastal Greenland, the southern Andes and in the Himalayas. By contrast, the glaciers in Antarctica – smaller ice masses that are not connected to the ice sheet – made scarcely any contribution to sea-level rise during this period. This finding deviates significantly from previous estimates, saying that the Antarctic glaciers caused around 30% of the global ice loss in the period from 1961 to 2004. «However, neither the periods nor the data basis are directly comparable here», adds Bolch, «so we shouldn’t make any premature conclusions in this respect.»

The results published in «Science» have important consequences for past studies: Bolch and Paul conclude by recommending that «Earlier global estimates on the contribution of glaciers to sea-level rise should be revised again».

Literature:
Alex S. Gardner, Geir Moholdt, J. Graham Cogley, Bert Wouters, Anthony A. Arendt, John Wahr, Etienne Bertier, Regine Hock, W. Tad Pfeffer, Georg Kaser, Stefan R. M. Ligtenberg, Tobias Bolch, Martin J. Sharp, Jon Ove Hagen, Michiel R. van den Broeke, Frank Paul. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science. May 17, 2013. Doi: 10.1126/science.1234532
Background
While GRACE determines the changes in the Earth’s gravity field and thus can only calculate mean values over large regions, hundreds of kilometers across, that are heavily glacierized, ICESat is fitted with lasers that record each 170 meter the distance from the Earth’s surface along predetermined paths with a spatial resolution of 70 meters.

The UZH geographers Tobias Bolch and Frank Paul contributed important basic data for the study: digital glacier outlines for the global glacier inventory from different regions in the world for which no precise data were previously available. For example for Alaska, Baffin Island, Greenland, the Alps, high-mountain Asia including the Himalayas as well as own calculations on the mass loss in Greenland and in high-mountain Asia.

Contact:
Dr. Tobias Bolch
Department of Geography
University of Zurich
Phone: +41 44 635 52 36
E-mail: tobias.bolch@geo.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>