Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea level rise: New iceberg theory points to areas at risk of rapid disintegration

23.07.2013
In events that could exacerbate sea level rise over the coming decades, stretches of ice on the coasts of Antarctica and Greenland are at risk of rapidly cracking apart and falling into the ocean, according to new iceberg calving simulations from the University of Michigan.

"If this starts to happen and we're right, we might be closer to the higher end of sea level rise estimates for the next 100 years," said Jeremy Bassis, assistant professor of atmospheric, oceanic and space sciences at the U-M College of Engineering, and first author of a paper on the new model published in the current issue of Nature Geoscience.

Iceberg calving, or the formation of icebergs, occurs when ice chunks break off larger shelves or glaciers and float away, eventually melting in warmer waters. Although iceberg calving accounts for roughly half of the mass lost from ice sheets, it isn't reflected in any models of how climate change affects the ice sheets and could lead to additional sea level rise, Bassis said.

"Fifty percent of the total mass loss from the ice sheets, we just don't understand. We essentially haven't been able to predict that, so events such as rapid disintegration aren't included in those estimates," Bassis said. "Our new model helps us understand the different parameters, and that gives us hope that we can better predict how things will change in the future."

The researchers have found the physics at the heart of iceberg calving, and their model is the first that can simulate the different processes that occur on both ends of the Earth. It can show why in northern latitudes—where glaciers rest on solid ground—icebergs tend to form in relatively small, vertical slivers that rotate onto their sides as they dislodge. It can also illustrate why in the southernmost places—where vast ice shelves float in the Antarctic Ocean—icebergs form in larger, more horizontal plank shapes.

The model treats ice sheets—both floating shelves and grounded glaciers—like loosely cemented collections of boulders. Such a description reflects how scientists in the field have described what iceberg calving actually looks like. The model allows those loose bonds to break when the boulders are pulled apart or rub against one another.

The simulations showed that calving is a two-step process driven primarily by the thickness of the ice.

"Essentially, everything is driven by gravity," Bassis said. "We identified a critical threshold of one kilometer where it seems like everything should break up. You can think of it in terms of a kid building a tower. The taller the tower is, the more unstable it gets."

Icebergs do have a tendency to form before that threshold though, Bassis suspects, due to cracks that are already there—either formed when capsizing bergs crash into the water and send shockwaves through the surrounding ice, or when melted water on the surface cuts through. The former is believed to have led to the Helheim Glacier collapse in 2003. The glacier had begun to retreat slowly in 2002, but suddenly gave way the following year when the thinner ice had broken away, exposing a thicker ice coast.

The latter—melted water pools—are occurring more frequently due to climate change, and they're believed to have played a role in the rapid disintegration of the Antarctica's Larsen B ice shelf, which crumbled over about six weeks in 2002.

When the researchers added random cracks to their model, it could mirror both Helheim and Larsen B.

A third feature is also required for the most dramatic ice collapses to occur. Icebergs can't float away and make room for more icebergs to break off the main sheet unless the system has access to open water. So areas that border deep, unobstructed ocean rather than fjords or other waterways are at greater risk of rapid ice loss. The researchers point to the Thwaites and Pine Island glaciers in Antarctica and the Jakobshavn Glacier in Greenland, which is already retreating rapidly, as places vulnerable to "catastrophic disintegration" because they have all three components.

"The ice in those places gets thicker as you go back. If our threshold is right, then if these places start to retreat as you expose the thicker calving font, they're susceptible to catastrophic breakup," Bassis said.

Retreat of the current ice coasts in these places areas could occur via melting or iceberg calving.

The paper is titled "Diverse calving patterns linked to glacier geometry." The research was funded by the National Science Foundation and NASA.

Abstract of paper: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1887.html

Jeremy Bassis: http://aoss.engin.umich.edu/people/jbassis

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>