Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sea level rise alters bay's salinity

While global-warming-induced coastal flooding moves populations inland, the changes in sea level will affect the salinity of estuaries, which influences aquatic life, fishing and recreation.

Researchers from Penn State and the University of Maryland Center for Environmental Science are studying the Chesapeake Bay to see how changes in sea level may have affected the salinity of various parts of the estuary.

"Many have hypothesized that sea-level rise will lead to an increase in estuarine salinity, but the hypothesis has never been evaluated using observations or 3-D models of estuarine flow and salinity," says Timothy W. Hilton, graduate student in meteorology at Penn State.

"The Chesapeake is very large, the largest estuary in the U.S. and it is very productive," says Raymond Najjar, associate professor of meteorology. "It has been the site of many large fisheries and supported many fishermen. A lot of money has gone into cleaning up the bay and reducing nutrient and sediment inputs. Climate change might make this work easier, or it could make it harder."

The Chesapeake is naturally saltier near its mouth and fresher near the inflow of rivers. The researchers, who also included Ming Li and Liejun. Zhong of the University of Maryland Center for Environmental Science, studied the Chesapeake Bay, using two complementary approaches, one based on a statistical analysis of historical data and one based on a computer model of the bay's flow and salinity.

They looked at historical data for the Susquehanna River as it flows into the Chesapeake Bay from 1949 to 2006. The flow of this fresh water into the bay naturally changes salinity. After accounting for the change in salinity due to rivers, the researchers found an increasing trend in salinity. The researchers reported their results in a recent edition of Journal of Geophysical Research.

The team then ran a hydrodynamic model of the Bay using present-day and reduced sea level conditions. The salinity change they found was consistent with the trend determined from the statistical analysis, supporting the hypothesis that sea-level rise has significantly increased salinity in the Bay. However, the Penn State researchers note that historical salinity data is limited and sedimentation reshapes the bed of the Bay. There are also cyclical effects partially due to Potomac River flow, Atlantic Shelf salinity and winds.

"Salt content affects jelly fish, oysters, sea grasses and many other forms of aquatic life," says Hilton. "The Chesapeake Bay is a beautiful place, used for recreation and for people's livelihoods. It is a real jewel on the East Coast and changes in salinity can alter its uses. Our research improves our understanding of the influence of climate change on the Bay and can therefore be used to improve costly restoration strategies."

A'ndrea Elyse Messer | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>