Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea level rise alters bay's salinity

24.11.2008
While global-warming-induced coastal flooding moves populations inland, the changes in sea level will affect the salinity of estuaries, which influences aquatic life, fishing and recreation.

Researchers from Penn State and the University of Maryland Center for Environmental Science are studying the Chesapeake Bay to see how changes in sea level may have affected the salinity of various parts of the estuary.

"Many have hypothesized that sea-level rise will lead to an increase in estuarine salinity, but the hypothesis has never been evaluated using observations or 3-D models of estuarine flow and salinity," says Timothy W. Hilton, graduate student in meteorology at Penn State.

"The Chesapeake is very large, the largest estuary in the U.S. and it is very productive," says Raymond Najjar, associate professor of meteorology. "It has been the site of many large fisheries and supported many fishermen. A lot of money has gone into cleaning up the bay and reducing nutrient and sediment inputs. Climate change might make this work easier, or it could make it harder."

The Chesapeake is naturally saltier near its mouth and fresher near the inflow of rivers. The researchers, who also included Ming Li and Liejun. Zhong of the University of Maryland Center for Environmental Science, studied the Chesapeake Bay, using two complementary approaches, one based on a statistical analysis of historical data and one based on a computer model of the bay's flow and salinity.

They looked at historical data for the Susquehanna River as it flows into the Chesapeake Bay from 1949 to 2006. The flow of this fresh water into the bay naturally changes salinity. After accounting for the change in salinity due to rivers, the researchers found an increasing trend in salinity. The researchers reported their results in a recent edition of Journal of Geophysical Research.

The team then ran a hydrodynamic model of the Bay using present-day and reduced sea level conditions. The salinity change they found was consistent with the trend determined from the statistical analysis, supporting the hypothesis that sea-level rise has significantly increased salinity in the Bay. However, the Penn State researchers note that historical salinity data is limited and sedimentation reshapes the bed of the Bay. There are also cyclical effects partially due to Potomac River flow, Atlantic Shelf salinity and winds.

"Salt content affects jelly fish, oysters, sea grasses and many other forms of aquatic life," says Hilton. "The Chesapeake Bay is a beautiful place, used for recreation and for people's livelihoods. It is a real jewel on the East Coast and changes in salinity can alter its uses. Our research improves our understanding of the influence of climate change on the Bay and can therefore be used to improve costly restoration strategies."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>