Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea-ice zone has a major influence on the ecosystem

18.09.2015

Researchers reconstruct environmental conditions in the Southern Ocean over the past 30,000 year

In the last 30,000 years there was, at times, more mixing in the Southern Ocean than previously thought. This meant that vast quantities of nutrients were available to phytoalgae, which in turn contributed to storing the greenhouse gas CO2 during the last glacial period.


Impressionen vom Eis der Antarktis

Researchers from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) present these new findings in a study published in the journal Nature Communications.

“We can demonstrate that during the last glacial period, the water column in the area of the seasonal sea-ice zone was more mixed in autumn and winter than previously thought,“ says Dr Andrea Abelmann, from the Alfred Wegener Institute.

The marine geologist and first author of the study explains, “Only in the short southern spring and summer, for just a few months in the year, was there a marked stratification at the ocean’s surface. Up until now, researchers assumed that during the last glacial period there was a layer of freshwater – created by melting icebergs – that sat on the ocean like a lid all year round.

Such a lid would have greatly reduced the supply of nutrients from the ocean’s depths to the surface leading to low biological production. However, the new findings show that in the last glacial period in the seasonal sea-ice zone, which was twice as large as it is today, the water was well mixed to a depth of a few hundred metres. This allowed nutrients to reach the surface from deeper levels.

In addition, melting ice in spring released the trace element iron, which had been transported with dust from South America. This created ideal conditions for microscopic, exoskeleton algae (diatoms): they were able to effectively utilise the nutrients to bind carbon during photosynthesis and so store CO2. When they died, these phytoplankton sank to the ocean floor thousands of metres below.

In this process, also known as the biological pump, atmospheric CO2 is stored in sedimentary deposits over geological time periods. During the ice ages, storage of the greenhouse gas CO2 in the Southern Ocean contributed significantly to global cooling.

For their study, the researchers used newly developed methods to reconstruct sedimentary deposits from the Atlantic section of the Southern Ocean. They compared isotope measurements on the silica skeletons of diatoms, which store environmental signals from the ocean’s surface, with isotope signals from radiolarians, which live in deeper water layers.

They then compared the findings from different ocean depths with results from climate models simulations to identify seasonal changes. This enabled the research team to reconstruct, for the first time, a detailed picture of the environmental conditions at the ocean’s surface, as well as in deeper water layers, over the last 30,000 years.

“Our findings show that changes in the ecosystem in the area of the seasonal sea-ice zone in the Southern Ocean contributed to CO2 storage,” says Abelman, summing up the geologists’ and modellers’ findings. The study demonstrates that a combination of modern reconstruction techniques and models can provide new insights into seasonal processes. “In order to make future predictions, we have to look more closely at past processes and current changes together," says the AWI researcher.

Original article:
Andrea Abelmann, Rainer Gersonde, Gregor Knorr, Xu Zhang, Bernhard Chapligin, Edith Maier, Oliver Esper, Hans Friedrichsen, Gerrit Lohmann, Hanno Meyer und Ralf Tiedemann: The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. Nature Communications 6:8136. doi: 10.1038/ncomms9136 (2015).

Notes for Editors:
Please observe the embargo: 18 September 2015 10:00 a.m. London time (BST), 11:00 MEST; 05:00 US Eastern Daylight Time
You can find printable images in our media library: http://multimedia.awi.de/medien/pincollection.jspx?collectionName=%7B5242c01e-49...

Your scientific contact is Dr Gregor Knorr: phone: +49 471 4831-1769; e-mail: Gregor.Knorr(at)awi.de and in the Communications Dept. of the Alfred Wegener Institute Dr Folke Mehrtens: phone: +49 471 4831-2007; e-mail: Folke.Mehrtens(at)awi.de

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Weitere Informationen:

http://www.awi.de/en/about-us/service/press.html

Ralf Röchert | idw - Informationsdienst Wissenschaft

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>