Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea Ice Plays a Pivotal Role in the Arctic Methane Cycle

13.11.2015

Nature study on greenhouse gas feedback mechanisms between the atmosphere, sea ice and ocean

The ice-covered Arctic Ocean is a more important factor concerning the concentration of the greenhouse gas methane in the atmosphere than previously assumed. Experts from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) report on the newly discovered interactions between the atmosphere, sea ice and the ocean in a recent online study in the journal Nature’s Scientific Reports.


Installation of under-ice sensors during an ice station

Photo: Alfred-Wegener-Institut / S. Hendricks

Sea ice forms a natural barrier on the Central Arctic Ocean, limiting gas exchange between water and atmosphere. Over the past several years, the summer sea ice cover in the Arctic has rapidly decreased. “We’re investigating how the changed conditions are affecting the geochemical interaction between the ocean, ice and atmosphere,” explains Dr Ellen Damm, the first author of the study and a biogeochemist at the Alfred Wegener Institute.

“We were able to confirm that the surface water in the central Arctic contains higher methane concentrations than the atmosphere, which means the Arctic Ocean is a potential source of atmospheric methane. That makes it fundamentally different from oceans in lower latitudes, which – except for a few sporadic sources – are considered methane sinks.”

For the study, Damm and her colleagues from the AWI, the Finnish Meteorological Institute and the University of Bremen analysed geochemical and oceanographic data gathered during a 2011 expedition to the Arctic with the research icebreaker Polarstern. They measured methane levels in both the sea ice and in the water directly below it, and in deeper seawater entirely unaffected by the ice.

“Our study shows that there are previously overlooked feedbacks between ice melting and formation, the atmosphere, and the seawater influenced by ice,” says Damm.

Among other factors, they analysed the salt solution, i.e. the brine, which is constitutes concentrated seawater resulting during the formation of sea ice. They found that the brine had a thousand times higher concentration of methane than the atmosphere – proof that sea ice can be a source of methane.

As a result of the melting and freezing processes, methane in the brine channels can be released into the seawater. Further, the water remains in stable layers, due to the different densities of freshwater and saltwater. As such, the methane from the brine channels remains in the uppermost water layer throughout the summer.

When autumn storms set in and it gets colder, different water layers become mixed (convection), which can release the greenhouse gas into the atmosphere. At that time of year the sea ice cover is fragmented and the “lid” on the ocean has almost disappeared, conditions that are conducive to the release of methane into the atmosphere. The convection-based mixing continues in the winter, and methane continues to escape through the leads between ice floes.

The stable water layers prevent the methane from mixing to greater depths of the Arctic Ocean; the significantly lower methane concentrations (compared to the atmosphere) in the lower layer unaffected by the ice, verify this process. This has two effects: firstly, the newly discovered and as such not previously accounted for near-surface feedback mechanism can lead to the direct release of methane from the sea ice and ocean into the atmosphere.

Secondly, the exchange between atmosphere and the deeper Arctic Ocean is reduced, which also limits the Arctic Ocean’s capacity to act as a methane sink. Co-author and AWI oceanographer Prof Ursula Schauer summarises the study’s importance as follows: “The role of sea ice in gas exchange and gas flux is much more complex than previously assumed, and the processes at work in the Northern Ocean differ greatly from those in lower latitudes. These aspects have to be kept in mind in future climate models.”

Further, she points out, the study raises the question on where the methane originates. Conceivably, methane could be produced in sea ice as it drifts through the Arctic, or methane trapped in sea ice could be transported from other regions.

Original publication:
Ellen Damm, Bert Rudels, Ursula Schauer, Susan Mau and Gerhard Dieckmann: Methane excess in Arctic surface water-triggered by sea ice formation and melting. Nature online: Scientific Reports | 5:16179 | DOI: 10.1038/srep16179

Notes for Editors:

Please find printable images on http://www.awi.de/nc/en/about-us/service/press/press-release/meereis-spielt-eine-wichtige-rolle-im-arktischen-methankreislauf.html. Your contact persons are Dr Ellen Damm (tel. ++49 471 4831-1423; e-mail: Ellen.Damm(at)awi.de) and Dr Folke Mehrtens, Dept. of Communications and Media Relations (tel. ++49 471 4831-2007; e-mail: Folke.Mehrtens(at)awi.de).

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>