Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea cucumbers: Dissolving coral reefs?

23.12.2011
Coral reefs are extremely diverse ecosystems that support enormous biodiversity. But they are at risk. Carbon dioxide emissions are acidifying the ocean, threatening reefs and other marine organisms.

New research led by Carnegie's Kenneth Schneider analyzed the role of sea cucumbers in portions of the Great Barrier Reef and determined that their dietary process of dissolving calcium carbonate (CaCO3) from the surrounding reef accounts for about half of at the total nighttime dissolution for the reef. The work is published December 23 by the Journal of Geophysical Research.

Reefs are formed through the biological deposition of calcium carbonate (CaCO3). Many of the marine organisms living on and around a reef contribute to either its destruction or construction. Therefore it is crucial that the amount of calcium carbonate remain in balance. When this delicate balance is disrupted, the reef ceases to grow and its foundations can be weakened.

In order to fully understand a reef's ability to deposit carbonate and grow, it is necessary to understand the roles that the various elements of sea life play in this process. This is especially important because increased atmospheric carbon dioxide is predicted to decrease the amount of carbonate available due to acidification.

The research group set out to examine the role that sea cucumbers play in the reef environment.

Schneider's team included Carnegie's Ken Caldeira, as well as Jacob Silverman, of the Israeli Limnology and Oceanography Institute; Maria Byrne and Erika Woolsey, both of the University of Sydney and the latter also from James Cook University; and Hampus Eriksson of Stockholm University.

They studied the growth and dissolution of One Tree Reef, which surrounds One Tree Island in Australia's Great Barrier Reef. Focusing on an area of the reef known as "DK13", they found that sea cucumbers were abundant. They collected some of these sea cucumbers and placed them in aquaria to study the effect on sea water resulting from the sand and rubble transported through their gut system as part of their digestive process.

As part of another ongoing study in this area, the team found that the coral reef was dissolving at night. They found that sea cucumbers play a crucial part in this process. They live off the bits of organic matter in the carbonate sand and rubble that they ingest; in this process, their digestive systems produce acids that dissolve parts of these carbonate minerals. The dissolved carbonate minerals are then released into the surrounding environment. The researchers found that these lowly organisms might be responsible for half of the CaCO3 of the reef observed at night.

The burning of coal, oil, and gas releases CO2 into the atmosphere, which is later absorbed by the ocean, causing the ocean to acidify. Ocean acidification is expected to slow reef growth. With slower reef growth, the dissolution of CaCO3 within the guts of sea cucumbers is expected to become even more important to the reef CaCO3 budget.

"Even though the sea cucumbers dissolve CaCO3 on the reef, in a lagoon such as the one at One Tree Reef, where there is limited seawater exchange with the surrounding ocean, they can be important in recycling of nutrients to support primary productivity. They also increase sea water buffer capacity to partially offset ocean acidification effects, helping to maintain the overall health of the coral reef," Schneider said. "Although sea cucumbers may play a part in reef dissolution, they are also an important part of an incredible marine environment."

This research was supported by the Moore foundation. The authors thank the University of Sydney's One Tree Island Research Station facility.

The Department of Global Ecology was established in 2002 to help build the scientific foundations for a sustainable future. The department is located on the campus of Stanford University, but is an independent research organization funded by the Carnegie Institution. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Kenneth Schneider | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>