Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea bed provides information about present climatic change

22.01.2009
Lately, every drought, flood or hurricane which happens in the planet is connected with climatic change, and therefore the interest of society and scientists is getting to know this phenomenon better.

Climatic change is connected at present with the phenomenon of global warming. This is characterized by the increase of carbon dioxide (CO2 gas), which produces the reduction of heat emission to the space and provokes a higher global warming.

Although gases in the atmosphere tell us about this greenhouse effect, oceans have accumulated information for million years which allow us a better understanding of this phenomenon.

The past lets us know the present

In this process, which involves a better knowledge of carbon cycle in the sea, David Gallego Torres developed the research work "Acumulación y preservación de materia orgánica en sedimentos marinos: implicaciones en los ciclos del carbono y nutrientes" (Accumulation and preservation of organic matter in marine sediments: implications in the cycles of carbon and nutrients), under the supervision of Professors Francisca Martínez Ruiz and Miguel Ortega Huertas of the University of Granada (Andalusian Institute of Earth Sciences, CEAMA and Department of Mineralogy and Petrology).

"Oceans may act as a drain of carbon, in the way of inorganic carbonates or as organic matter settled in sediments", says Gallego Torres, who did research, among other phenomena, into the accumulation of organic matter in the geological past (Plioceno-Holoceno), in the East of the Mediterranean.

According to the researcher, "for the carrying out of this work we applied different techniques of geochemical analysis, mineralogy and isotopic analysis of organic matter for the reconstruction of the paleoceanographic conditions which induced to the accumulation of organic matter in marine sediments (sapropels), its implications in the carbon cycle and, consequently, in the climatic variation in the Mediterranean area and in the African craton, the main source of nutrients of these sediments".

Professor Francisca Martínez Ruiz highlights that the analysis research line of the climatic variability in the geological past “provides scenes of climatic changes which help us to understand the answers of the components of the climatic system in future”.

Conclusions

Doctor David Gallego Torres says that one of the main conclusions of his research is that "climatic fluctuations affect the marine environment in such a way that there may be a carbon taking by organic matter, due to these changes in marine environment’s oceanography, in such a way that the organic matter would remain accumulated again in the earth’s crust of sediments and would remain there for a while".

Other conclusions are:

- the accumulation of organic matter in marine sediments is mainly connected with an intensification of marine productivity;

- anoxic conditions (without oxygen) of the sea bed favour the preservation of such organic matter, but they can not produce an enrichment in the sediment by themselves;

- anoxia causes nutrients’ recycling maintaining a high productivity, in such a way that the interaction between primary high productivity and anoxia may promote the accumulation of organic matter in sediments.

- Such fixing of organic carbon in the litosphere is connected with the climatic system, as high concentrations of CO2 in the atmosphere facilitate a high productivity, due to an excess of carbon. Such CO2 is later fixed, in the way of organic matter, and removed of the atmospheric reservoir inducing a fall in Earth’s superficial temperature.

A paper about this thesis has been published in ScienceDirect, Palaleo, Palaeogeography, Palaeoclimatology, Palaeoecology 246 (2007) 424–439.

Carlos Centeno Cuadros | alfa
Further information:
http://prensa.ugr.es/prensa/research/verNota/prensa.php?nota=571
http://de.youtube.com/watch?v=r6LrWAZ5Y1o

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>