Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use LiDAR, 3-D modeling software to intricately map active Chinese fault zone

16.06.2014

Chinese and American scientists collaborating in the study of an active seismic fault that produced one of China's most deadly earthquakes say their deployment of an airborne LiDAR system, which uses pulses of laser light to calculate distances and chart terrain features, has helped them produce the most precise topographical measurements ever of the fault zone.

"Light detection and ranging (LiDAR) presents a new approach to build detailed topographic maps effectively," they report. They add that these high-precision three-dimensional models can be used to illustrate not only land surface changes following past quakes, but also features of past ruptures that could point to the possibility of future temblors.

Experts at the State Key Laboratory of Earthquake Dynamics and at the National Earthquake Infrastructure Service in Beijing, working with a colleague at the United States Geological Survey (USGS) in Pasadena, California, mounted a Leica ALS-60 LiDAR system aboard a Chinese Yun Five aircraft and then began scanning the Haiyuan fault zone in a series of flights over the course of a week. The fault zone is similar to the San Andreas fault in California, which has similarly been scanned and studied as a comparison.

"During the past century," they explain in a new study, "the Haiyuan fault zone produced two great earthquakes: the M 8.5 Haiyuan earthquake in 1920, along the eastern Haiyuan fault, and the M 8.3 Gulang earthquake in 1927."

"The Haiyuan earthquake of 16 December 1920 is one of the largest intra- continental earthquakes ever documented in history," they add, "and ruptured about a 237-kilometer-long ground surface, with a maximum left-lateral slip of 10.2 m, and claimed over 220,000 lives."

In the new study, "Quantitative study of tectonic geomorphology along the Haiyuan fault based on airborne LiDAR," lead scientist Jing Liu and her colleagues at the Earthquake Dynamics Lab, part of the China Earthquake Administration in Beijing, state their experiments with the LiDAR scanning system and related building of a high-resolution topographical model provide "an example of how LiDAR data may be used to improve the study of active faults and the risk assessment of related hazards."

Sections of the 3D digital model generated with the LiDAR data are "intensively analyzed to demonstrate tectonic geomorphic feature identification and displacement measurement," they state. The LiDAR data are also used, for example, to calculate horizontal and vertical coseismic offsets in one section of the fault zone.

LiDAR data can be used to verify measurements made during fieldwork on offsets of tectonic landform features, state co-authors Tao Chen, Pei Zhen Zhang, Jing Liu, Chuan You Li, and Zhi Kun Ren, along with Ken Hudnut at the USGS, who visited the China Earthquake Administration to participate in this study. "The offset landforms are visualized on an office computer workstation easily, and specialized software may be used to obtain fault displacement measurements quantitatively," they explain.

With LiDAR-generated digital models of the topography across fault zones, the "link between fault activity and large earthquakes is better recognized, as well as the potential risk for future earthquake hazards," says the team of scientists.

More precise measurements of the active fault zone made possible by the LiDAR system, and their depiction in sophisticated three-dimensional maps, are helping scientists not only in basic research, but also in terms of calculating the probability of a seismic shock recurring, say the co-authors of the new study, which was published online in the journal Chinese Science Bulletin by Science China Press and Springer-Verlag.

Airborne laser swath mapping helps scientists to virtually remove the vegetation covering from topographical models; this "bare earth" representation provides for more accurate identification of tectonic features and changes following a quake.

A LiDAR airborne scanning system of the Earth's terrain was deployed over the section of the southwestern Chinese province of Sichuan that was the epicenter of a Mw7.9 earthquake that struck in May of 2008; LiDAR data were used to map the scale of landslides and ultimately to develop rescue schemes.

In the new study, the Chinese and American scientists say that digital models created using LiDAR data from the Haiyuan fault zone "have a much higher resolution than existing topographic data and most aerial photographs, allowing us to map the locations of fault traces more accurately than ever."

The high level of precision of the digital models constructed with information from the LiDAR laser scans of the topography in this fault zone will encourage future "site-specific fault activity studies," state the scientists.

"In the future," they predict, "we can expect that more and more concepts or models of fault activity would benefit from this unprecedented survey technique."

Along the Haiyuan fault zone in the western Chinese province of Gansu, LiDAR scans and related digital models have already been used to identify 600 channels and other linear geomorphic features slated for more comprehensive analysis.

"The next step is to measure the displacements along the whole Haiyuan fault and analyze the principle of the slip distribution," states the team of scientists, "which would help people better understand the fundamental link between fault activity and large earthquakes and assess potential risk for future earthquake hazards."

In places where slip during past earthquakes was less pronounced, it is possible that future earthquakes could have greater slip in order to accommodate and equalize motions along the fault system. Alternatively, slip may be large repeatedly in some places and small elsewhere. Such variations in slip may help to assess future hazards, so observations of this kind are very important to answer unresolved questions that are central to research on hazards of earthquake fault zones around the world.


The original study, "Quantitative study of tectonic geomorphology along the Haiyuan fault based on airborne LiDAR," was published in the Chinese Science Bulletin by Science China Press and Springer-Verlag.

Reporters and editors seeking to preview this article can obtain the study by contacting Rui An, editorial director at Chinese Science Bulletin, at anrui@scichina.org.

Tao Chen | Eurek Alert!
Further information:
http://zh.scichina.com/english/

Further reports about: Chinese activity airborne earthquake measurements mobile LIDAR scans

More articles from Earth Sciences:

nachricht New Link Between Ocean Microbes and Atmosphere Uncovered
22.05.2015 | University of California, San Diego

nachricht Scientists tackle mystery of thunderstorms that strike at night
21.05.2015 | National Center for Atmospheric Research/University Corporation for Atmospheric Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>