Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Suggest New Age for East African Rift

29.03.2012
Fossil-rich region may be 25-30 million years old, geology study finds

The Great Rift Valley of East Africa—the birthplace of the human species—may have taken much longer to develop than previously believed, according to a new study published this week in Nature Geoscience that was led by scientists from James Cook University and Ohio University.

The team’s findings suggest that a major tectonic event occurred in East Africa as far back as 25-30 million years ago, rearranging the flow of large rivers such as the Congo and the Nile to create the unique landscapes and climates that mark Africa today.

“The findings have important implications for understanding climate change models, faunal evolution and the development of Africa’s unique landscape,” said lead author and geologist Eric Roberts of the James Cook University in Australia.

The Rift is an example of a divergent plate boundary, where the Earth’s tectonic forces are pulling plates apart and creating new continental crust.

The East African Rift system is composed of two main segments, the eastern branch that passes through Ethiopia and Kenya, and a western branch that forms a giant arc from Uganda to Malawi, interconnecting the famous rift lakes of eastern Africa.

Scientists such as Roberts and his Ohio University study co-authors Nancy Stevens and Patrick O’Connor have found the area to be a rich source of fossils, including of some of the earliest anthropoid primates.

“This formation is the only late Oligocene terrestrial fossil-bearing deposit known from continental Africa below the equator,” noted Stevens, who leads the paleontological team focused on the Oligocene, a geological period 23 to 34 million years ago.

“It has already produced several species new to science, and is particularly significant because it provides a last snapshot of the endemic African forms prior to large-scale faunal exchange with Eurasia later in the Cenozoic,” continued Stevens, an associate professor of vertebrate paleontology in Ohio University’s Heritage College of Osteopathic Medicine.

The traditional view holds that the eastern branch of this region is much older, having developed 15-25 million years earlier than the western branch.

Using an approach that included the dating of multiple minerals, such as zircons, contained within sandstones exposed in the western branch of the rift, the research team was first able to constrain the age of formation of the individual minerals and then use this information to estimate potential igneous source rocks that must have eroded at different points in the past to generate the sedimentary rocks.

The team’s work provides new evidence that the two rift segments developed synchronously, nearly doubling the initiation age of the western branch and the timing of uplift in this region of East Africa.

“A key piece of evidence in this study is the discovery of an approximately 25 million year old lake and river deposits in the Rukwa Rift (a segment of the western branch) that preserve abundant volcanic ash and vertebrate fossils. ‘Fingerprinting’ of these sediments reveals important information about when rifting and volcanism began in the western rift and how the landscape developed,” Roberts said.

The team’s research, funded by the U.S. National Science Foundation, the Louis B. Leakey Foundation and the National Geographic Society, underscores an integration of biological and geological approaches essential for addressing complex issues in Earth history.

“Although this work was initiated to help constrain the age of rocks in the Rukwa Rift Basin of southwestern Tanzania, it has provided novel data that address a number of other, large-scale phenomena that have shaped the surface of the region and the continent,” said O’Connor, associate professor of anatomy in Ohio University’s Heritage College of Osteopathic Medicine.

Note to editors: High-resolution images of a map of the region under study and photos of the region are available for media use.

Ohio University Contacts:
Nancy Stevens, stevensn@ohio.edu, (740) 590-4499; Patrick O’Connor, oconnorp@ohio.edu, (740) 707-5008; Andrea Gibson, director of research communications, (740) 597-2166, gibsona@ohio.edu.
James Cook University Contacts:
Eric Roberts, eric.roberts@jcu.edu.au, +61 7 4781 6947; Jim O’Brien, media relations, +61 (7) 4781 4822 or 0418 892449.

Andrea Gibson | Newswise Science News
Further information:
http://www.ohio.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>