Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists probe link between magnetic polarity reversal and mantle processes

Scientists at the University of Liverpool have discovered that variations in the long-term reversal rate of the Earth's magnetic field may be caused by changes in heat flow from the Earth's core into the base of the overlying mantle.

The Earth is made up of a solid inner core, surrounded by a liquid outer core, in turn covered by a thicker or more viscous mantle, and ultimately by the solid crust beneath our feet.

The magnetic field is generated by the motions of the liquid iron alloy in the outer core, approximately 3,000 km beneath the Earth's crust. These motions occur because the core is losing heat to the overlying solid mantle that extends up to the crust on which we live.

The mantle itself is also in motion but at much slower speeds of millimetres per year as opposed to millimetres per second in the core. This mantle motion is responsible for the drifting of the continents at the surface as well as earthquakes, volcanoes, and changes in the climate over millions of years.

At intervals of hundreds of thousands of years, the North and South magnetic poles reverse and scientists can tell from rock formations precisely at what periods in the past this took place. The most recent reversal happened 780,000 years ago. Magnetic field variations happen on timescales of months to millions of years. Much of the magnetic field's variation is thought to be sporadic but new research, led by Liverpool scientists, has found that over long timescales, this variability may be related to the changing pattern of heat loss across the core-mantle boundary occurring over millions of years.

The team performed a detailed synthesis based on latest findings from a number of different areas including the ancient geomagnetic field and its record in rocks, motions in the mantle caused by motions of the continents and the process responsible for generating the magnetic field in the core.

Dr Andrew Biggin, from the University's School of Environmental Sciences, said: "The magnetic field has undergone big changes in its behaviour that might be due to the mantle's controlling influence on the core. In particular, we focused on the time interval between around 200 and 80 million years ago – when dinosaurs were still around – when the magnetic field initially started reversing its polarity very frequently. During this period the polarity was reversing up to 10 times every million years; however 50 million years later, it stopped reversing altogether for nearly 40 million years.

"When these changes in the magnetic field were taking place, the whole of the Earth's crust and mantle, including all of the continents, were undergoing a big rotation with respect to the geographic and time-averaged geomagnetic poles – the points defining the Earth's axis of rotation. We suspect that this process, called True Polar Wander and caused by the changing density distribution in the mantle, will have changed the pattern of heat flowing out of the core in such a manner as to cause the magnetic field to first become less stable, with lots of reversals, and then become much more stable – and stop reversing."

The team believes this may not be the only explanation and conjecture that this big drop in the frequency of reversals may also be related to a similar decrease in the number of 'large igneous provinces' (LIPs) or concentrated outpourings of magma from the Earth's core, 50 million years later. The last LIP happened around 16 million years ago and produced the Columbia Plateau in the North West US. LIPs are thought to be produced by hot plumes of material rising from thermal instabilities near the bottom boundary of the mantle.

The team believes the 50 million year time lag between the magnetic field changing and the occurrence of the LIPs could represent the time it takes for the plumes to travel 2,890 km through the mantle. If this link were correct it would mean that the rather unstable magnetic field observed in the last 50 million years predicts that a considerable number of LIPs will erupt over the next 50 million years. This in turn could have major implications for the surface conditions – for climate and for life itself.

The research, published in Nature Geoscience, is a collaboration between the University of Liverpool, GFZ Potsdam, IPGP Paris, the University of Oslo and Utrecht University. Future research at Liverpool, is planned and already underway to develop a new tool for understanding the Earth's system.

Kate Mizen | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>