Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists probe Antarctic glaciers for clues to past and future sea level

29.10.2008
International team exploring two of the last uncharted regions of Earth, the Aurora and Wilkes Subglacial Basins, to learn about past climate change and future impacts on global sea level

Scientists from the U.S., U.K. and Australia have teamed up to explore two of the last uncharted regions of Earth, the Aurora and Wilkes Subglacial Basins, immense ice-buried lowlands in Antarctica with a combined area the size of Mexico. The research could show how Earth's climate changed in the past and how future climate change will affect global sea level.

Scientists believe the barely observed Aurora Subglacial Basin, which lies in East Antarctica, could represent the weak underbelly of the East Antarctic Ice Sheet, the largest remaining body of ice on Earth. Until recently the East Antarctic Ice Sheet, which covers the two basins, had been considered a stable ice reservoir unlikely to contribute to rising sea level in the near future.

Limited soundings of the ice upstream of Australia's Casey Station, however, reveal a vast basin with its base lying kilometers below sea level. The basin could make the East Antarctic Ice Sheet more vulnerable in a warming world. Satellite data show that Totten Glacier, which dominates the ice of the Aurora Subglacial Basin, appears to be losing ice at its downstream edge.

The University of Texas at Austin's Jackson School of Geosciences has teamed up with the University of Edinburgh and the Australian Antarctic Division as part of a major International Polar Year project to study this vast area using multiple airborne instruments.

Beginning this December, the ICECAP (Investigating the Cryospheric Evolution of the Central Antarctic Plate) team will fly an upgraded World War II-era DC-3 aircraft with a suite of geophysical instruments to map the thickness of the ice sheet and measure the texture, composition, density and topography of rocks below the ice.

In the past, scientists surveying the Antarctic ice sheets relied either on heavy cargo planes with poor fuel efficiency but long range, or lighter planes with better fuel efficiency but short range. To fly lighter planes far into the interior of the continent, support planes have to fly in additional fuel from a coastal port, multiplying fuel costs several times.

With the upgraded DC-3, the ICECAP team gets a combination of efficiency and range, minimizing the project's carbon footprint at a time when high oil prices have caused federal funding agencies to scale back scientific studies in the polar regions.

"We're getting much more science done with less oil using this old airframe with modern engines," said Don Blankenship, research scientist at the Jackson School's Institute for Geophysics and principal investigator for ICECAP.

Data from the project will help model East Antarctic ice stability, forecast how ice might react to climate change, and show its potential impact on global sea level.

The chemistry of the thick ice might also solve a mystery about past climate. Antarctic ice cores have already revealed aspects of Earth's climate dating back 800,000 years. Farther back, around one million years ago, Earth's climate changed in a way that caused ice ages to come and go much more rapidly than before. Scientists have long wondered what caused this shift. Australian researchers with ICECAP will search for sites to drill new ice cores with the potential to extend the ice core record to beyond one million years.

J.B. Bird | EurekAlert!
Further information:
http://www.utexas.edu
http://www.ipy.org/

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>