Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists probe Antarctic glaciers for clues to past and future sea level

International team exploring two of the last uncharted regions of Earth, the Aurora and Wilkes Subglacial Basins, to learn about past climate change and future impacts on global sea level

Scientists from the U.S., U.K. and Australia have teamed up to explore two of the last uncharted regions of Earth, the Aurora and Wilkes Subglacial Basins, immense ice-buried lowlands in Antarctica with a combined area the size of Mexico. The research could show how Earth's climate changed in the past and how future climate change will affect global sea level.

Scientists believe the barely observed Aurora Subglacial Basin, which lies in East Antarctica, could represent the weak underbelly of the East Antarctic Ice Sheet, the largest remaining body of ice on Earth. Until recently the East Antarctic Ice Sheet, which covers the two basins, had been considered a stable ice reservoir unlikely to contribute to rising sea level in the near future.

Limited soundings of the ice upstream of Australia's Casey Station, however, reveal a vast basin with its base lying kilometers below sea level. The basin could make the East Antarctic Ice Sheet more vulnerable in a warming world. Satellite data show that Totten Glacier, which dominates the ice of the Aurora Subglacial Basin, appears to be losing ice at its downstream edge.

The University of Texas at Austin's Jackson School of Geosciences has teamed up with the University of Edinburgh and the Australian Antarctic Division as part of a major International Polar Year project to study this vast area using multiple airborne instruments.

Beginning this December, the ICECAP (Investigating the Cryospheric Evolution of the Central Antarctic Plate) team will fly an upgraded World War II-era DC-3 aircraft with a suite of geophysical instruments to map the thickness of the ice sheet and measure the texture, composition, density and topography of rocks below the ice.

In the past, scientists surveying the Antarctic ice sheets relied either on heavy cargo planes with poor fuel efficiency but long range, or lighter planes with better fuel efficiency but short range. To fly lighter planes far into the interior of the continent, support planes have to fly in additional fuel from a coastal port, multiplying fuel costs several times.

With the upgraded DC-3, the ICECAP team gets a combination of efficiency and range, minimizing the project's carbon footprint at a time when high oil prices have caused federal funding agencies to scale back scientific studies in the polar regions.

"We're getting much more science done with less oil using this old airframe with modern engines," said Don Blankenship, research scientist at the Jackson School's Institute for Geophysics and principal investigator for ICECAP.

Data from the project will help model East Antarctic ice stability, forecast how ice might react to climate change, and show its potential impact on global sea level.

The chemistry of the thick ice might also solve a mystery about past climate. Antarctic ice cores have already revealed aspects of Earth's climate dating back 800,000 years. Farther back, around one million years ago, Earth's climate changed in a way that caused ice ages to come and go much more rapidly than before. Scientists have long wondered what caused this shift. Australian researchers with ICECAP will search for sites to drill new ice cores with the potential to extend the ice core record to beyond one million years.

J.B. Bird | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>