Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists outline long-term sea-level rise in response to warming of planet

A new study estimates that global sea levels will rise about 2.3 meters, or more than seven feet, over the next several thousand years for every degree (Celsius) the planet warms.

This international study is one of the first to combine analyses of four major contributors to potential sea level rise into a collective estimate, and compare it with evidence of past sea-level responses to global temperature changes.

Results of the study, funded primarily by the National Science Foundation and the German Federal Ministry of Education and Research, are being published this week in the Proceedings of the National Academy of Sciences.

“The study did not seek to estimate how much the planet will warm, or how rapidly sea levels will rise,” noted Peter Clark, an Oregon State University paleoclimatologist and author on the PNAS article. “Instead, we were trying to pin down the ‘sea-level commitment’ of global warming on a multi-millennial time scale. In other words, how much would sea levels rise over long periods of time for each degree the planet warms and holds that warmth?”

“The simulations of future scenarios we ran from physical models were fairly consistent with evidence of sea-level rise from the past,” Clark added. “Some 120,000 years ago, for example, it was 1-2 degrees warmer than it is now and sea levels were about five to nine meters higher. This is consistent with what our models say may happen in the future.”

Scientists say the four major contributors to sea-level rise on a global scale will come from melting of glaciers, melting of the Greenland ice sheet, melting of the Antarctic ice sheet, and expansion of the ocean itself as it warms. Several past studies have examined each of these components, the authors say, but this is one of the first efforts at merging different analyses into a single projection.

The researchers ran hundreds of simulations through their models to calculate how the four areas would respond to warming, Clark said, and the response was mostly linear. The amount of melting and subsequent sea-level response was commensurate with the amount of warming. The exception, he said, was in Greenland, which seems to have a threshold at which the response can be amplified.

“As the ice sheet in Greenland melts over thousands of years and becomes lower, the temperature will increase because of the elevation loss,” Clark said. “For every 1,000 meters of elevation loss, it warms about six degrees (Celsius). That elevation loss would accelerate the melting of the Greenland ice sheet.”

In contrast, the Antarctic ice sheet is so cold that elevation loss won’t affect it the same way. The melting of the ice sheet there comes primarily from the calving of icebergs, which float away and melt in warmer ocean waters, or the contact between the edges of the ice sheet and seawater.

In their paper, the authors note that sea-level rise in the past century has been dominated by the expansion of the ocean and melting of glaciers. The biggest contributions in the future may come from melting of the Greenland ice sheet, which could disappear entirely, and the Antarctic ice sheet, which will likely reach some kind of equilibrium with atmospheric temperatures and shrink significantly, but not disappear.

“Keep in mind that the sea level rise projected by these models of 2.3 meters per degree of warming is over thousands of years,” emphasized Clark, who is a professor in Oregon State University’s College of Earth, Ocean, and Atmospheric Sciences. “If it warms a degree in the next two years, sea levels won’t necessarily rise immediately. The Earth has to warm and hold that increased temperature over time.

“However, carbon dioxide has a very long time scale and the amounts we’ve emitted into the atmosphere will stay up there for thousands of years,” he added. “Even if we were to reduce emissions, the sea-level commitment of global warming will be significant.”

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

Peter Clark | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>