Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists outline long-term sea-level rise in response to warming of planet

16.07.2013
A new study estimates that global sea levels will rise about 2.3 meters, or more than seven feet, over the next several thousand years for every degree (Celsius) the planet warms.

This international study is one of the first to combine analyses of four major contributors to potential sea level rise into a collective estimate, and compare it with evidence of past sea-level responses to global temperature changes.

Results of the study, funded primarily by the National Science Foundation and the German Federal Ministry of Education and Research, are being published this week in the Proceedings of the National Academy of Sciences.

“The study did not seek to estimate how much the planet will warm, or how rapidly sea levels will rise,” noted Peter Clark, an Oregon State University paleoclimatologist and author on the PNAS article. “Instead, we were trying to pin down the ‘sea-level commitment’ of global warming on a multi-millennial time scale. In other words, how much would sea levels rise over long periods of time for each degree the planet warms and holds that warmth?”

“The simulations of future scenarios we ran from physical models were fairly consistent with evidence of sea-level rise from the past,” Clark added. “Some 120,000 years ago, for example, it was 1-2 degrees warmer than it is now and sea levels were about five to nine meters higher. This is consistent with what our models say may happen in the future.”

Scientists say the four major contributors to sea-level rise on a global scale will come from melting of glaciers, melting of the Greenland ice sheet, melting of the Antarctic ice sheet, and expansion of the ocean itself as it warms. Several past studies have examined each of these components, the authors say, but this is one of the first efforts at merging different analyses into a single projection.

The researchers ran hundreds of simulations through their models to calculate how the four areas would respond to warming, Clark said, and the response was mostly linear. The amount of melting and subsequent sea-level response was commensurate with the amount of warming. The exception, he said, was in Greenland, which seems to have a threshold at which the response can be amplified.

“As the ice sheet in Greenland melts over thousands of years and becomes lower, the temperature will increase because of the elevation loss,” Clark said. “For every 1,000 meters of elevation loss, it warms about six degrees (Celsius). That elevation loss would accelerate the melting of the Greenland ice sheet.”

In contrast, the Antarctic ice sheet is so cold that elevation loss won’t affect it the same way. The melting of the ice sheet there comes primarily from the calving of icebergs, which float away and melt in warmer ocean waters, or the contact between the edges of the ice sheet and seawater.

In their paper, the authors note that sea-level rise in the past century has been dominated by the expansion of the ocean and melting of glaciers. The biggest contributions in the future may come from melting of the Greenland ice sheet, which could disappear entirely, and the Antarctic ice sheet, which will likely reach some kind of equilibrium with atmospheric temperatures and shrink significantly, but not disappear.

“Keep in mind that the sea level rise projected by these models of 2.3 meters per degree of warming is over thousands of years,” emphasized Clark, who is a professor in Oregon State University’s College of Earth, Ocean, and Atmospheric Sciences. “If it warms a degree in the next two years, sea levels won’t necessarily rise immediately. The Earth has to warm and hold that increased temperature over time.

“However, carbon dioxide has a very long time scale and the amounts we’ve emitted into the atmosphere will stay up there for thousands of years,” he added. “Even if we were to reduce emissions, the sea-level commitment of global warming will be significant.”

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

Peter Clark | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>