Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists nearing forecasts of long-lived wildfires

14.11.2013
Scientists have developed a new computer modeling technique that offers the promise, for the first time, of producing continually updated daylong predictions of wildfire growth throughout the lifetime of long-lived blazes.

The technique, devised by scientists at the National Center for Atmospheric Research (NCAR) and the University of Maryland, combines cutting-edge simulations portraying the interaction of weather and fire behavior with newly available satellite observations of active wildfires. Updated with new observations every 12 hours, the computer model forecasts critical details such as the extent of the blaze and changes in behavior.


Wildfires can be seen in much different detail, depending which satellite instrument is used to observe them. The image at left, produced from data generated by the MODIS instrument aboard NASA’s Aqua satellite, uses 1-kilometer pixels to approximate a fire burning in Brazil from March 26 to 30, 2013. The image at right, produced with data from the new VIIRS instrument, shows the same fire in far greater detail with 375-meter pixels. Credit: Wilfrid Schroeder, University of Maryland

The breakthrough is described in a study appearing today in an online issue of Geophysical Research Letters, after first being posted online last month.

“With this technique, we believe it’s possible to continually issue good forecasts throughout a fire’s lifetime, even if it burns for weeks or months,” said Janice Coen of NCAR in Boulder, Colo., the lead author and model developer. “This model, which combines interactive weather prediction and wildfire behavior, could greatly improve forecasting—particularly for large, intense wildfire events where the current prediction tools are weakest.”

Firefighters currently use tools that can estimate the speed of the leading edge a fire but are too simple to capture critical effects caused by the interaction of fire and weather.

The researchers successfully tested the new technique by using it retrospectively on the 2012 Little Bear Fire in New Mexico, which burned for almost three weeks and destroyed more buildings than any other wildfire in the state’s history.

Graphic of wildfire prediction software
Wildfires can be seen in much different detail, depending which satellite instrument is used to observe them. The image at left, produced from data generated by the MODIS instrument aboard NASA’s Aqua satellite, uses 1-kilometer pixels to approximate a fire burning in Brazil from March 26 to 30, 2013. The image at right, produced with data from the new VIIRS instrument, shows the same fire in far greater detail with 375-meter pixels. Credit: Wilfrid Schroeder, University of Maryland
Sharpening the picture
In order to generate an accurate forecast of a wildfire, scientists need a computer model that can both incorporate current data about the fire and simulate what it will do in the near future.

Over the last decade, Coen has developed a tool, known as the Coupled Atmosphere-Wildland Fire Environment (CAWFE) computer model, that connects how weather drives fires and, in turn, how fires create their own weather. Using CAWFE, she successfully simulated the details of how large fires grew.

But without the most updated data about a fire’s current state, CAWFE could not reliably produce a longer-term prediction of an ongoing fire. This is because the accuracy of all fine-scale weather simulations decline significantly after a day or two, affecting the simulation of the blaze. An accurate forecast would also have to include updates on the effects of firefighting and of such processes as spotting, in which embers from a fire are lofted in the fire plume and dropped ahead of a fire, igniting new flames.

Until now, it was not possible to update the model. Satellite instruments offered only coarse observations of fires, providing images in which each pixel represented a square kilometer (an area roughly 0.6 miles by 0.6 miles). These images might show several places burning, but could not distinguish the boundaries between burning and non-burning areas, except for the largest wildfires.

To solve the problem, Coen’s co-author, Wilfrid Schroeder of the University of Maryland, in College Park, has produced higher-resolution fire detection data from a new satellite instrument, the Visible Infrared Imaging Radiometer Suite (VIIRS), which is jointly operated by NASA and the National Oceanic and Atmospheric Administration (NOAA). This new tool provides wall-to-wall coverage of the entire globe at intervals of 12 hours or less, with pixels about 375 meters across (1,200 feet). The higher resolution enabled the two researchers to outline the active fire perimeter in much greater detail.

Coen and Schroeder then fed the VIIRS fire observations into the CAWFE model. By restarting the model every 12 hours with the latest observations of the fire extent — a process known as cycling — they could accurately predict the course of the Little Bear fire in 12- to 24-hour increments during five days of the historic blaze. By continuing this way, it would be possible to simulate even a very long-lived fire’s entire lifetime, from ignition until extinction.

“The transformative event has been the arrival of this new satellite data,” said Schroeder, a professor of geographical sciences who is also a visiting scientist with NOAA. “The enhanced capability of the VIIRS data favors detection of newly ignited fires before they erupt into major conflagrations. The satellite data has tremendous potential to supplement fire management and decision support systems, sharpening the local, regional, and continental monitoring of wildfires.”

Keeping firefighters safe
The researchers said that forecasts using the new technique could be particularly useful in anticipating sudden blowups and shifts in the direction of the flames, such as what happened when 19 firefighters perished in Arizona last summer.

In addition, they could enable decision makers to look at several newly ignited fires and determine which pose the greatest threat.

“Lives and homes are at stake, depending on some of these decisions, and the interaction of fuels, terrain, and changing weather is so complicated that even seasoned managers can’t always anticipate rapidly changing conditions,” Coen said. “Many people have resigned themselves to believing that wildfires are unpredictable. We’re showing that’s not true.”

The research was funded by NASA, the Federal Emergency Management Agency, and the National Science Foundation (NSF), which sponsors NCAR. The University Corporation for Atmospheric Research manages NCAR. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of NSF.

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this early view article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2013GL057868/abstract Or, you may order a copy of the final paper by emailing your request to Thomas Sumner at tsumner@agu.org. Please provide your name, the name of your publication, and your phone number. Neither the paper nor this press release is under embargo.

Also about fire research: This week’s Eos features an article about new research techniques for investigating the linkages between people, climate and fire. The article is accessible for free to anyone interested in it. Eos, the newspaper of the Earth and space sciences, is published by AGU.

Title

“Use of spatially refined satellite remote sensing fire detection data to initialize and evaluate coupled weather-wildfire growth model simulations”

Authors:

Janice L. Coen
National Center for Atmospheric Research, Boulder, Colorado, USA
Wilfrid Schroeder
Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
Contact information for the authors:
Janice Coen: Phone: +1 ( 303) 497-8986, Email: janicec@ucar.edu
Wilfrid Schroeder: +1 (301) 683-3582, Email: wilfrid.schroeder@noaa.gov
AGU Contact:
Thomas Sumner +1 (202) 777-7516 tsumner@agu.org
NCAR/UCAR Contacts:
David Hosansky, NCAR/UCAR Media Relations +1 (303) 497-8611 hosansky@ucar.edu
Zhenya Gallon, NCAR/UCAR Media Relations +1 (303) 497-8607 zhenya@ucar.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>