Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How can scientists measure evolutionary responses to climate change?

01.12.2009
As global temperatures continue to rise scientists are presented with the complex challenge of understanding how species respond and adapt. In a paper published in Insect Conservation and Diversity, Dr Francisco Rodriguez-Trelles and Dr Miguel Rodriguez assess this challenge.

Twentieth-Century global warming of approximately 0.6¢ªC has already affected the Earth's biota and now the major challenge facing ecologists and evolutionary biologists is to predict how biological impacts of climate change will unfold in response to further projected temperature increases of up to 6¢ªC by 2100.

"This relatively mild level of thermal increase has already caused shifts in species ranges, especially at higher latitudes and towards the poles," said Rodriguez-Trelles. "Understanding biological responses to global climate warming can be dauntingly complex, but primarily it requires careful quantification of the rates of temporal change,"

Assessing the trajectory of biological processes under global warming begins by obtaining accurate estimates of these processes and linking them to historical records. This reveals if changes in species are indeed long term responses, rather than the short term behavioural changes regularly prompted by the succession of the seasons.

However, updating historical records is proving to be far less straightforward than might be supposed. This is because of the complexities of global warming, which concomitantly to the increase in Earth's temperature is causing an expansion of the length of the growing season.

This presents scientists with problems as to the precision with which time reckoning systems track the course of global warming-induced changes to the Earth System, and can lead to seriously distorted results. Long-term studies of phenological trends show that neglecting the increasing lag between seasonal climate and calendar dates can lead to confusing the direct and indirect effects of global warming.

"The evidence of Earth's life responses to global warming is overwhelming. However a widespread approach to quantify biological effects of global warming relies on comparisons Of historical with present records of biological variables," concluded Rodriguez-Trelles. "In this paper we have identified several reasons why this strategy can lead to seriously distorted estimates of biological effects of global warming, as well as ways they could be handled in future studies."

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>