Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How can scientists measure evolutionary responses to climate change?

01.12.2009
As global temperatures continue to rise scientists are presented with the complex challenge of understanding how species respond and adapt. In a paper published in Insect Conservation and Diversity, Dr Francisco Rodriguez-Trelles and Dr Miguel Rodriguez assess this challenge.

Twentieth-Century global warming of approximately 0.6¢ªC has already affected the Earth's biota and now the major challenge facing ecologists and evolutionary biologists is to predict how biological impacts of climate change will unfold in response to further projected temperature increases of up to 6¢ªC by 2100.

"This relatively mild level of thermal increase has already caused shifts in species ranges, especially at higher latitudes and towards the poles," said Rodriguez-Trelles. "Understanding biological responses to global climate warming can be dauntingly complex, but primarily it requires careful quantification of the rates of temporal change,"

Assessing the trajectory of biological processes under global warming begins by obtaining accurate estimates of these processes and linking them to historical records. This reveals if changes in species are indeed long term responses, rather than the short term behavioural changes regularly prompted by the succession of the seasons.

However, updating historical records is proving to be far less straightforward than might be supposed. This is because of the complexities of global warming, which concomitantly to the increase in Earth's temperature is causing an expansion of the length of the growing season.

This presents scientists with problems as to the precision with which time reckoning systems track the course of global warming-induced changes to the Earth System, and can lead to seriously distorted results. Long-term studies of phenological trends show that neglecting the increasing lag between seasonal climate and calendar dates can lead to confusing the direct and indirect effects of global warming.

"The evidence of Earth's life responses to global warming is overwhelming. However a widespread approach to quantify biological effects of global warming relies on comparisons Of historical with present records of biological variables," concluded Rodriguez-Trelles. "In this paper we have identified several reasons why this strategy can lead to seriously distorted estimates of biological effects of global warming, as well as ways they could be handled in future studies."

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>