Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Image Vast Subglacial Water System Underpinning West Antarctica’s Thwaites Glacier

09.07.2013
In a development that will help predict potential sea level rise from the Antarctic ice sheet, scientists from The University of Texas at Austin’s Institute for Geophysics have used an innovation in radar analysis to accurately image the vast subglacial water system under West Antarctica’s Thwaites Glacier. They have detected a swamp-like canal system beneath the ice that is several times as large as Florida’s Everglades.

The findings, as described this week in the Proceedings of the National Academy of Sciences, use new observational techniques to address long-standing questions about subglacial water under Thwaites, a Florida-sized outlet glacier in the Amundsen Sea Embayment considered a key factor in projections of global sea level rise.

On its own, Thwaites contains enough fresh water to raise oceans by about a meter, and it is a critical gateway to the majority of West Antarctica’s potential sea level contribution of about 5 meters.

The new observations suggest the dynamics of the subglacial water system may be as important as well recognized ocean influences in predicting the fate of Thwaites Glacier.

Without an accurate characterization of the bodies of water deep under Thwaites, scientists have offered competing theories about their existence and organization, especially in the rapidly changing region where the glacier meets the ocean.

Using an innovation in airborne ice-penetrating radar analysis developed by lead author Dusty Schroeder, a doctoral candidate at the Institute for Geophysics, the Texas team shows that Thwaites’ subglacial water system consists of a swamp-like canal system several times as large as Florida’s Everglades lying under the deep interior of the ice sheet, shifting to a series of mainly stream-like channels downstream as the glacier approaches the ocean.

Scientists have attempted to use ice-penetrating radar to characterize subglacial water for many years, but technical challenges related to the effects of ice temperature on radar made it difficult to confirm the extent and organization of these water systems. Schroeder’s technique looking at the geometry of reflections solves this problem, because the temperature of the ice does not affect the angular distribution of radar energy.

“Looking from side angles, we found that distributed patches of water had a radar signature that was reliably distinct from stream-like channels,” said Schroeder. He compared the radar signature to light glinting off the surface of many small interconnected ponds when viewed out of an airplane window.

Distinguishing subglacial swamps from streams is important because of their contrasting effect on the movement of glacial ice. Swamp-like formations tend to lubricate the ice above them whereas streams, which conduct water more efficiently, are likely to cause the base of the ice to stick between the streams. (The effect is similar to the way rain grooves on a tire can help prevent a car from hydroplaning on a wet road.)

As a result of this change in slipperiness, the glacier’s massive conveyor belt of ice piles up at the zone where the subglacial water system transitions from swamps to streams.

This transition forms a stability point along a subglacial ridge that holds the massive glacier on the Antarctic continent.

“This is where ocean and ice sheet are at war, on that sticking point, and eventually one of them is going to win,” said co-author Don Blankenship, a senior research scientist from the Institute for Geophysics.

Observations of the subglacial stream-and-swamp dynamic and the sub-ice topography suggest that Thwaites Glacier is stable in the short term, holding its current position on the continent. However, the large pile of ice that has built up in the transition zone could rapidly collapse if undermined by the ocean warming or changes to the water system.

“Like many systems, the ice can be stabilized until some external factor causes it to jump its stability point,” said Blankenship. “We now understand both how the water system is organized and where that dynamic is playing itself out. Our challenge is to begin to understand the timing and processes that will be involved when that stability is breached.”

Current models predicting the fate of the glacier do not yet account for these dynamic, subglacial processes.

The findings rely on radar data acquired during airborne geophysical surveys over West Antarctica by the Institute for Geophysics, with operational support from the National Science Foundation. The analysis was enabled through intensive supercomputing supported by the university’s Texas Advanced Computing Center.

The research was funded through grants from the National Science Foundation and NASA, with additional support from both the Vetlesen Foundation and the Institute for Geophysics, which is a research unit of the university’s Jackson School of Geosciences.

J.B. Bird | EurekAlert!
Further information:
http://www.jsg.utexas.edu/news/?p=4487
http://www.utexas.edu

More articles from Earth Sciences:

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>