Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Image Vast Subglacial Water System Underpinning West Antarctica’s Thwaites Glacier

09.07.2013
In a development that will help predict potential sea level rise from the Antarctic ice sheet, scientists from The University of Texas at Austin’s Institute for Geophysics have used an innovation in radar analysis to accurately image the vast subglacial water system under West Antarctica’s Thwaites Glacier. They have detected a swamp-like canal system beneath the ice that is several times as large as Florida’s Everglades.

The findings, as described this week in the Proceedings of the National Academy of Sciences, use new observational techniques to address long-standing questions about subglacial water under Thwaites, a Florida-sized outlet glacier in the Amundsen Sea Embayment considered a key factor in projections of global sea level rise.

On its own, Thwaites contains enough fresh water to raise oceans by about a meter, and it is a critical gateway to the majority of West Antarctica’s potential sea level contribution of about 5 meters.

The new observations suggest the dynamics of the subglacial water system may be as important as well recognized ocean influences in predicting the fate of Thwaites Glacier.

Without an accurate characterization of the bodies of water deep under Thwaites, scientists have offered competing theories about their existence and organization, especially in the rapidly changing region where the glacier meets the ocean.

Using an innovation in airborne ice-penetrating radar analysis developed by lead author Dusty Schroeder, a doctoral candidate at the Institute for Geophysics, the Texas team shows that Thwaites’ subglacial water system consists of a swamp-like canal system several times as large as Florida’s Everglades lying under the deep interior of the ice sheet, shifting to a series of mainly stream-like channels downstream as the glacier approaches the ocean.

Scientists have attempted to use ice-penetrating radar to characterize subglacial water for many years, but technical challenges related to the effects of ice temperature on radar made it difficult to confirm the extent and organization of these water systems. Schroeder’s technique looking at the geometry of reflections solves this problem, because the temperature of the ice does not affect the angular distribution of radar energy.

“Looking from side angles, we found that distributed patches of water had a radar signature that was reliably distinct from stream-like channels,” said Schroeder. He compared the radar signature to light glinting off the surface of many small interconnected ponds when viewed out of an airplane window.

Distinguishing subglacial swamps from streams is important because of their contrasting effect on the movement of glacial ice. Swamp-like formations tend to lubricate the ice above them whereas streams, which conduct water more efficiently, are likely to cause the base of the ice to stick between the streams. (The effect is similar to the way rain grooves on a tire can help prevent a car from hydroplaning on a wet road.)

As a result of this change in slipperiness, the glacier’s massive conveyor belt of ice piles up at the zone where the subglacial water system transitions from swamps to streams.

This transition forms a stability point along a subglacial ridge that holds the massive glacier on the Antarctic continent.

“This is where ocean and ice sheet are at war, on that sticking point, and eventually one of them is going to win,” said co-author Don Blankenship, a senior research scientist from the Institute for Geophysics.

Observations of the subglacial stream-and-swamp dynamic and the sub-ice topography suggest that Thwaites Glacier is stable in the short term, holding its current position on the continent. However, the large pile of ice that has built up in the transition zone could rapidly collapse if undermined by the ocean warming or changes to the water system.

“Like many systems, the ice can be stabilized until some external factor causes it to jump its stability point,” said Blankenship. “We now understand both how the water system is organized and where that dynamic is playing itself out. Our challenge is to begin to understand the timing and processes that will be involved when that stability is breached.”

Current models predicting the fate of the glacier do not yet account for these dynamic, subglacial processes.

The findings rely on radar data acquired during airborne geophysical surveys over West Antarctica by the Institute for Geophysics, with operational support from the National Science Foundation. The analysis was enabled through intensive supercomputing supported by the university’s Texas Advanced Computing Center.

The research was funded through grants from the National Science Foundation and NASA, with additional support from both the Vetlesen Foundation and the Institute for Geophysics, which is a research unit of the university’s Jackson School of Geosciences.

J.B. Bird | EurekAlert!
Further information:
http://www.jsg.utexas.edu/news/?p=4487
http://www.utexas.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>