Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use high-energy particles from space to probe thunderstorms

03.06.2009
Trying to find how thurnderstorms create lightning

Florida Institute of Technology researchers are trying to solve one of the great mysteries in nature: how thunderstorms make lightning. Because, in principle, lightning is a big spark it should behave like other sparks—like the ones created when we touch a door knob on a dry day. Scientists have accumulated evidence, however, that lightning sometimes behaves in very un-spark-like ways.

Lightning can start in regions of thunderstorms that have relatively low electric fields and, so, should create no sparks. Because lightning obviously is made by thunderstorms, scientists are left wondering what they are missing.

Three such scientists, Joseph Dwyer and Hamid Rassoul from Florida Tech and Martin Uman from the University of Florida, recently published a paper in the Journal of Geophysical Research titled, "Remote measurement of thunderstorm electrostatic fields." It describes their new technique to remotely measure thunderstorm electric fields on the ground.

By measuring small radio pulses made by cosmic-rays passing through these storms, they calculate that they can reconstruct the electric fields along the high-energy particle's paths. This could allow them to measure any lightning initiation pockets that might exist.

One idea is that thunderstorms generate big electric fields capable of making sparks, but those strong fields are localized in very small pockets—too small to be easily detected by the balloons and aircraft sent into thunderclouds to measure the fields. Although this seems reasonable, the problem has been how to test it. Indeed, for decades scientists have struggled in vain to find such pockets where lightning might be initiated.

"Cosmic-rays are high-energy particles from outer space that constantly rain down on our planet. They form a natural probe for measuring thunderstorms," explained Dwyer, professor of physics and space sciences, who is leading the research effort. "Thunderstorms are big, violent, and dangerous places. Cosmic-ray air showers allow us to study them from a relatively safe location on the ground."

"It's a daunting task to find these high field regions," explained Rassoul, professor of physics and space sciences. "Thunderstorms are large and the chance that a balloon would find its way into exactly the right place at the right time to catch lightning initiation is small."

This summer at the UF/Florida Tech International Center for Lightning Research and Testing at Camp Blanding, Fla., scientists are conducting experiments to search for these lightning initiation pockets. If successful, researchers will be closer to understanding lightning, a phenomenon that has mystified people for thousands of years.

Karen Rhine | EurekAlert!
Further information:
http://www.fit.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>