Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Evidence of Asteroids with Earth-Like Crust

09.01.2009
Two rare meteorites found in Antarctica two years ago are from a previously unknown, ancient asteroid with an outer layer or crust similar in composition to the crust of Earth's continents, reports a research team primarily composed of geochemists from the University of Maryland.

Published in the January 8 issue of the journal Nature, this is the first ever finding of material from an asteroid with a crust like Earth's. The discovery also represents the oldest example of rock with this composition ever found.

These meteorites point "to previously unrecognized diversity” of materials formed early in the history of the Solar System, write authors James Day, Richard Ash, Jeremy Bellucci, William McDonough and Richard Walker of the University of Maryland; Yang Liu and Lawrence Taylor of the University of Tennessee and Douglas Rumble III of the Carnegie Institution for Science.

"What is most unusual about these rocks is that they have compositions similar to Earth's andesite continental crust -- what the rock beneath our feet is made of,” said first author Day, who is a research scientist in Maryland's department of geology. "No meteorites like this have ever been seen before.”

Day explained that his team focused their investigations on how such different Solar System bodies could have crusts with such similar compositions. "We show that this occurred because of limited melting of the asteroid, and thus illustrate that the formation of andesite crust has occurred in our solar system by processes other than plate tectonics, which is the generally accepted process that created the crust of Earth”.

The two meteorites (numbered GRA 06128 and GRA 06129) were discovered in the Graves Nunatak Icefield during the US Antarctic Search for Meteorites 2006/2007 field season. Day and his colleagues immediately recognized that these meteorites were unusual because of elevated contents of a light-colored feldspar mineral called oligoclase. "Our age results point to these rocks being over 4.52 billion years old and that they formed during the birth of the Solar System. Combined with the oxygen isotope data, this age points to their origin from an asteroid rather than a planet,” he said.

Andesite Asteroids
There are a number of asteroids in the asteroid belt that may have properties like the GRA 06128 and GRA 06129 meteorites including the asteroid (2867) Steins, which was studied by the European Space Agency's Rosetta spacecraft during a flyby this past September. These so-called E-type asteroids reflect the Sun's light very brightly, as would be predicted for a body with a crust made of feldspar.

According to Day and his colleagues, finding pieces of meteorites with andesite compositions is important because they not only point to a previously unrecognized diversity of Solar System materials, but also to a new mechanism to generate andesite crust. On the present-day Earth, this occurs dominantly through plates colliding and subduction – where one plate slides beneath another. Subduction forces water back into the mantle aiding melting and generating arc volcanoes, such as the Pacific Rim of Fire – in this way new crust is formed.

"Our studies of the GRA meteorites suggest similar crust compositions may be formed via melting of materials in planets that are initially volatile- and possibly water-rich, like the Earth probably was when if first formed” said Day.” A major uncertainty is how evolved crust formed in the early Solar System and these meteorites are a piece in the puzzle to understanding these processes.”

This research was supported by NASA's cosmochemistry program.

Lee Tune | Newswise Science News
Further information:
http://www.umd.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>