Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find black gold amidst overlooked data

23.02.2009
About half of the oil in the ocean bubbles up naturally from the seafloor, with Earth giving it up freely like it was of no value. Likewise, NASA satellites collect thousands of images and 1.5 terrabytes of data every year, but some of it gets passed over because no one thinks there is a use for it.

Scientists recently found black gold bubbling up from an otherwise undistinguished mass of ocean imagery. Chuanmin Hu, an optical oceanographer at the University of South Florida, St. Petersburg, and colleagues from the National Oceanic and Atmospheric Administration (NOAA) and the University of Massachusetts–Dartmouth (UMass), found that they could detect oil seeping naturally from the seafloor of the Gulf of Mexico by examining streaks amid the reflected sunlight on the ocean's surface.

Most researchers usually discard such "sun glint" data as if they were over-exposed photos from a camera. "Significant sun glint is sometimes thought of as trash, particularly when you are looking for biomass and chlorophyll," said Hu. "But in this case, we found treasure."

The new technique could provide a more timely and cost-effective means to survey the ocean for oil seeps, to monitor oil slicks, and to differentiate human-induced spills from seeps.

Oil decreases the roughness of the ocean surface. Depending on the angles of the camera and of the light reflection, oil creates contrasting swaths that can show up in airborne images as either lighter or darker than the surrounding waters.

The detection and monitoring of oil spills and seeps by satellite is not new. Visible, infrared, microwave, and radar sensors have all been used, with synthetic aperture radar (SAR) being the most popular and reliable method in recent years according to the study authors. SAR imagery can be very expensive, the authors note, and timely, repeat coverage is not always possible, particularly in tropical regions.

Using imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on NASA's Terra and Aqua satellites, Hu and colleagues assert, is far cheaper because the data is collected daily and provided freely by NASA, without the need for special observation requests. And the polar orbits of Terra and Aqua allow images of oil slicks to be collected several times per week in tropical regions and perhaps several times a day at higher latitudes. The description of the new technique was published in January in Geophysical Research Letters.

Hu actually happened upon the oil imagery while looking for signs of harmful algal blooms—commonly referred to as "red tide"—in the western Gulf of Mexico. Examining MODIS images, he kept noticing streaks across the sun glint reflections. After conferring with study co-authors Xiaofeng Li and William Pichel of NOAA and Frank Muller-Karger of UMass, Hu became aware that the streaks could be oil from natural seeps on the seafloor.

Hu and colleagues then defined a geographic area of the western Gulf and obtained MODIS images for the month of May for nine consecutive years (2000 to 2008) from NASA's Goddard Space Flight Center, Greenbelt, Md. The team reviewed more than 200 images containing sun glint, and found more than 50 with extensive oil slicks.

Exactly how much oil naturally seeps out of the seafloor is unknown, and most estimates are very crude because there has never been a proper global survey made for the public record. Researchers identified the natural seepage rate as a critical unanswered question when the National Academy of Sciences compiled its third Oil in the Sea report in 2003.

"This capacity for detecting oil in the ocean has great potential, not just for oil seeps but for responding to oil spills," said Chris Reddy, a marine chemist at the Woods Hole Oceanographic Institution in Massachusetts. "Scientists might be able to use this to forensically study old spills, to watch how new ones evolve in real time, and to rule out a spill when there is none. Ultimately, this could lead to a better use of our public resources."

The technique could be useful for detecting and monitoring oil spills from ships and other platforms, though Hu emphasized that the spills must be large enough (at least hundreds of meters or feet) to be visible in the MODIS imagery. If there is suspicion of a large human-caused spill, for instance, researchers would be able to review ocean imagery to see if the slick was present before the alleged spill, indicating a natural seepage. On the other hand, MODIS satellite imagery collected on a regular basis could help coastal managers track and mitigate the effects of large accidental spills.

The new method is not perfect, as cloud cover or a lack of sun glint can limit its use. Hu and colleagues suggest it may be best used as a complement to SAR, which penetrates cloud cover and can be tilted to get the necessary imaging angle.

"If you can get an image on a two- to three-day time frame and anywhere on the globe, that's pretty spectacular," said Reddy. "The first few days are critical to tracking oil in the ocean, so it helps to be able to use technology in real time to make informed decisions about cleanup."

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/oilslick.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>