Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover Amazon river is 11 million years old

31.07.2009
Researchers at the University of Liverpool have discovered that the Amazon river, and its transcontinental drainage, is around 11 million years old and took its present shape about 2.4 million years ago

Researchers at the University of Liverpool have discovered that the Amazon river, and its transcontinental drainage, is around 11 million years old and took its present shape about 2.4 million years ago.

University of Liverpool researchers, in collaboration with the University of Amsterdam and Petrobras, the national oil company of Brazil, analysed sedimentary material taken from two boreholes near the mouth of the river to calculate the age of the Amazon river and the Amazon deep sea fan.

Prior to this study the exact age of the Amazon, one of the two largest rivers in the world, was not known. Until recently the Amazon Fan, a submarine sediment column around 10km thick, had proven difficult to penetrate. New exploration efforts by Petrobas, however, have lea to two new boreholes being drilled near the mouth of the Amazon - one 2.5miles (4.5km) below sea level - which resulted in new sedimentological and paleontological analysis of samples from the river sediment.

"River sediment records provide a unique insight into the palaeoclimate and geography of the hinterland," said Jorge Figueiredo from the University's Department of Earth and Ocean Sciences

"This new research has large implications for our understanding of South American paleogeography and the evolution of aquatic organisms in Amazonia and on the Atlantic coast. The origin of the Amazon river is a defining moment: a new ecosystem came into being at the same time as the uplifting Andes formed a geographic divide."

The study was published in the scientific journal, Geology, in July 2009.

Notes to editors:

1.The University of Liverpool is a member of the Russell Group of leading research-intensive institutions in the UK. It attracts collaborative and contract research commissions from a wide range of national and international organisations valued at more than £93 million annually.

2. The research was carried out by a team of researchers from the Sequence Stratigraphy Group of the University of Liverpool, the Institute for Biodiversity and ecosystem Dynamics (IBED) of the University of Amsterdam and Petrobas, the Brazilian National Oil Company.

Sarah Stamper | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Party discipline for jumping genes

22.09.2017 | Life Sciences

The pyrenoid is a carbon-fixing liquid droplet

22.09.2017 | Life Sciences

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>