Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists detect huge carbon 'burp' that helped end last ice age

01.06.2010
Scientists have found the possible source of a huge carbon dioxide 'burp' that happened some 18,000 years ago and which helped to end the last ice age.

The results provide the first concrete evidence that carbon dioxide (CO2) was more efficiently locked away in the deep ocean during the last ice age, turning the deep sea into a more 'stagnant' carbon repository – something scientists have long suspected but lacked data to support.

Working on a marine sediment core recovered from the Southern Ocean floor between Antarctica and South Africa, the international team led by Dr Luke Skinner of the University of Cambridge radiocarbon dated shells left behind by tiny marine creatures called foraminifera (forams for short).

By measuring how much carbon-14 (14C) was in the bottom-dwelling forams' shells, and comparing this with the amount of 14C in the atmosphere at the time, they were able to work out how long the CO2 had been locked in the ocean.

By linking their marine core to the Antarctic ice-cores using the temperature signal recorded in both archives, the team were also able compare their results directly with the ice-core record of past atmospheric CO2 variability.

According to Dr Skinner: "Our results show that during the last ice age, around 20,000 years ago, carbon dioxide dissolved in the deep water circulating around Antarctica was locked away for much longer than today. If enough of the deep ocean behaved in the same way, this could help to explain how ocean mixing processes lock up more carbon dioxide during glacial periods."

Throughout the past two million years (the Quaternary), the Earth has alternated between ice ages and warmer interglacials. These changes are mainly driven by alterations in the Earth's orbit around the sun (the Milankovic theory).

But changes in Earth's orbit could only have acted as the 'pace-maker of the ice ages' with help from large, positive feedbacks that turned this solar 'nudge' into a significant global energy imbalance.

Changes in atmospheric CO2 were one of the most important of these positive feedbacks, but what drove these changes in CO2 has remained uncertain.

Because the ocean is a large, dynamic reservoir of carbon, it has long been suspected that changes in ocean circulation must have played a major role in motivating these large changes in CO2. In addition, the Southern Ocean around Antarctica is expected to have been an important centre of action, because this is where deep water can be lifted up to the sea surface and 'exhale' its CO2 to the atmosphere.

Scientists think more CO2 was locked up in the deep ocean during ice ages, and that pulses or 'burps' of CO2 from the deep Southern Ocean helped trigger a global thaw every 100,000 years or so. The size of these pulses was roughly equivalent to the change in CO2 experienced since the start of the industrial revolution.

If this theory is correct, we would expect to see large transfers of carbon from the ocean to the atmosphere at the end of each ice age. This should be most obvious in the relative concentrations of radiocarbon (14C) in the ocean and atmosphere; 14C decays over time and so the longer carbon is locked up in the deep sea, the less 14C it contains.

As well as providing evidence for rapid release of carbon dioxide during deglaciation, the research illustrates how the ocean circulation can change significantly over a relatively short space of time.

"Our findings underline the fact that the ocean is a large and dynamic carbon pool. This has implications for proposals to pump carbon dioxide into the deep sea as a way of tackling climate change, for example. Such carbon dioxide would eventually come back up to the surface, and the question of how long it would take would depend on the state of the ocean circulation, as illustrated by the last deglaciation," says Dr Skinner.

The results are published today in Science.

For additional information, please contact:
Becky Allen, Office of Communications, University of Cambridge
Tel: +44 (0) 1223 332300, mobile: + 44 (0)7500 883644, email: becky.allen@admin.cam.ac.uk
Notes to editors:
Skinner, L.C., Fallon, S. Waelbroeck, C., Michel, E. and Barker S., 'Ventilation of the deep Southern Ocean and deglacial CO2 rise' is published in Science on 27 May 2010.

The research was funded by the Royal Society and the Natural Environment Research Council.

Becky Allen | EurekAlert!
Further information:
http://www.cam.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>