Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists detect dark lightning linked to visible lightning

25.04.2013
Researchers have identified a burst of high-energy radiation known as ‘dark lightning” immediately preceding a flash of ordinary lightning. The new finding provides observational evidence that the two phenomena are connected, although the exact nature of the relationship between ordinary bright lightning and the dark variety is still unclear, the scientists said.

“Our results indicate that both these phenomena, dark and bright lightning, are intrinsic processes in the discharge of lightning,” said Nikolai Østgaard, who is a space scientist at the University of Bergen in Norway and led the research team.

He and his collaborators describe their findings in an article recently accepted in Geophysical Research Letters—a journal of the American Geophysical Union.

Dark lightning is a burst of gamma rays produced during thunderstorms by extremely fast moving electrons colliding with air molecules. Researchers refer to such a burst as a terrestrial gamma ray flash.

Dark lightning is the most energetic radiation produced naturally on Earth, but was unknown before 1991. While scientists now know that dark lightning naturally occurs in thunderstorms, they do not know how frequently these flashes take place or whether visible lightning always accompanies them.

In 2006, two independent satellites—one equipped with an optical detector and the other carrying a gamma ray detector—coincidentally flew within 300 kilometers (186 miles) of a Venezuelan storm as a powerful lightning bolt exploded within a thundercloud. Scientists were unaware then that a weak flash of dark lightning had preceded the bright lightning.

But last year, Østgaard and his colleagues discovered the previously unknown gamma ray burst while reprocessing the satellite data. “We developed a new, improved search algorithm…and identified more than twice as many terrestrial gamma flashes than originally reported,” said Østgaard. He and his team detected the gamma ray flash and a discharge of radio waves immediately preceding the visible lightning.

“This observation was really lucky,” Østgaard said. “It was fortuitous that two independent satellites—which are traveling at 7 kilometers per second (4.3 miles per second)—passed right above the same thunderstorm right as the pulse occurred.” A radio receiver located 3,000 kilometers (1864 miles) away at Duke University in Durham, North Carolina detected the radio discharge.

The satellites’ observations combined with radio-wave data provided the information that Østgaard and his team used to reconstruct this ethereal electrical event, which lasted 300 milliseconds.

Østgaard and his team suspect that the flash of dark lightning was triggered by the strong electric field that developed immediately before the visible lightning. This strong field created a cascade of electrons moving at close to the speed of light. When those relativistic electrons collided with air molecules, they generated gamma rays and lower energy electrons that were the main electric current carrier that produced the strong radio pulse before the visible lightning.

Dark and bright lightning may be intrinsic processes in the discharge of lightning, Østgaard said, but he stressed that more research needs to be done to elucidate the link.

The European Space Agency is planning on launching the Atmospheric Space Interactions Monitor (ASIM) within the next three years, which will be able to better detect both dark and visible lightning from space, said Østgaard, who is part of the team that is building the ASIM gamma-ray detector.

Dark lightning has remained a perplexing phenomenon due to scientific limitations and a dearth of measurements, Østgaard explained.

“Dark lightning might be a natural process of lightning that we were completely unaware of before 1991,” he noted. “But it is right above our heads, which makes it very fascinating.”

A grant from the European Research Council and the Research Council of Norway funded this research.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/grl.50466/abstract

Or, you may order a copy of the final paper by emailing your request to Sarah Charley at scharley@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:

“Simultaneous observations of optical lightning and terrestrial gamma ray flash from space”
Authors:
N. Østgaard and T. Gjesteland Birkeland Centre for Space Science, University of Bergen, Norway and Department of Physics and Technology, University of Bergen, Norway;B. E. Carlson Birkeland Centre for Space Science, University of Bergen, Norway, Department of Physics, Technology, University of Bergen, Norway, and Carthage College, Kenosha, Wisconsin, USA;A. B. Collier South African National Space Agency Space Science, South Africa, and University of KwaZulu-Natal, South Africa;S. A. Cummer and G. Lu Electrical and Computer Engineering Department, Duke University, North Carolina, USA;H. J. Christian University of Alabama in Hunstville, Alabama, USA.

Contact information for the author:

Nikolai Østgaard, Cell: +47 4727 0653, Phone: +47 5558 2794, Email: nikolai.ostgaard@ift.uib.no

AGU Contacts:
Sarah Charley
+1 (202) 777-7516
scharley@agu.org
Peter Weiss
+1 (202) 777-7507
pweiss@agu.org
University of Bergen Birkeland Centre for Space Science Media Relations Contact
Arve Aksnes
Phone: +47 55 58 81 53
Cellphone: +47 480 26 563
Arve.Aksnes@mnfa.uib.no

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>