Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher 3 billion-year-old genomic fossils

20.12.2010
Analysis of modern-day genomes finds evidence for ancient environmental change and a massive expansion in genetic diversity

About 580 million years ago, life on Earth began a rapid period of change called the Cambrian Explosion, a period defined by the birth of new life forms over many millions of years that ultimately helped bring about the modern diversity of animals. Fossils help palaeontologists chronicle the evolution of life since then, but drawing a picture of life during the 3 billion years that preceded the Cambrian Period is challenging, because the soft-bodied Precambrian cells rarely left fossil imprints. However, those early life forms did leave behind one abundant microscopic fossil: DNA.

Because all living organisms inherit their genomes from ancestral genomes, computational biologists at MIT reasoned that they could use modern-day genomes to reconstruct the evolution of ancient microbes. They combined information from the ever-growing genome library with their own mathematical model that takes into account the ways that genes evolve: new gene families can be born and inherited; genes can be swapped or horizontally transferred between organisms; genes can be duplicated in the same genome; and genes can be lost.

The scientists traced thousands of genes from 100 modern genomes back to those genes' first appearance on Earth to create a genomic fossil telling not only when genes came into being but also which ancient microbes possessed those genes. The work suggests that the collective genome of all life underwent an expansion between 3.3 and 2.8 billion years ago, during which time 27 percent of all presently existing gene families came into being.

Eric Alm, a professor in the Department of Civil and Environmental Engineering and the Department of Biological Engineering, and Lawrence David, who recently received his Ph.D. from MIT and is now a Junior Fellow in the Harvard Society of Fellows, have named this period the Archean Expansion.

Because so many of the new genes they identified are related to oxygen, Alm and David first thought that the emergence of oxygen might be responsible for the Archean Expansion. Oxygen did not exist in the Earth's atmosphere until about 2.5 billion years ago when it began to accumulate, likely killing off vast numbers of anerobic life forms in the Great Oxidation Event.

"The Great Oxidation Event was probably the most catastrophic event in the history of cellular life, but we don't have any biological record of it," says Alm.

Closer inspection, however, showed that oxygen-utilizing genes didn't appear until the tail end of the Archean Expansion 2.8 billion years ago, which is more consistent with the date geochemists assign to the Great Oxidation Event.

Instead, Alm and David believe they've detected the birth of modern electron transport, the biochemical process responsible for shuttling electrons within cellular membranes. Electron transport is used to breathe oxygen and by plants and some microbes during photosynthesis when they harvest energy directly from the sun. A form of photosynthesis called oxygenic photosynthesis is believed to be responsible for generating the oxygen associated with the Great Oxidation Event, and is responsible for the oxygen we breathe today.

The evolution of electron transport during the Archean Expansion would have enabled several key stages in the history of life, including photosynthesis and respiration, both of which could lead to much larger amounts of energy being harvested and stored in the biosphere.

"Our results can't say if the development of electron transport directly caused the Archean Expansion," says David. "Nonetheless, we can speculate that having access to a much larger energy budget enabled the biosphere to host larger and more complex microbial ecosystems."

David and Alm also went on to investigate how microbial genomes evolved after the Archean Expansion by looking at the metals and molecules associated with the genes and how those changed in abundance over time. They found an increasing percentage of genes using oxygen, and enzymes associated with copper and molybdenum, which is consistent with the geological record of evolution.

"What is really remarkable about these findings is that they prove that the histories of very ancient events are recorded in the shared DNA of living organisms," says Alm. "And now that we are beginning to understand how to decode that history, I have hope that we can reconstruct some of the earliest events in the evolution of life in great detail."

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>