Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher 3 billion-year-old genomic fossils

20.12.2010
Analysis of modern-day genomes finds evidence for ancient environmental change and a massive expansion in genetic diversity

About 580 million years ago, life on Earth began a rapid period of change called the Cambrian Explosion, a period defined by the birth of new life forms over many millions of years that ultimately helped bring about the modern diversity of animals. Fossils help palaeontologists chronicle the evolution of life since then, but drawing a picture of life during the 3 billion years that preceded the Cambrian Period is challenging, because the soft-bodied Precambrian cells rarely left fossil imprints. However, those early life forms did leave behind one abundant microscopic fossil: DNA.

Because all living organisms inherit their genomes from ancestral genomes, computational biologists at MIT reasoned that they could use modern-day genomes to reconstruct the evolution of ancient microbes. They combined information from the ever-growing genome library with their own mathematical model that takes into account the ways that genes evolve: new gene families can be born and inherited; genes can be swapped or horizontally transferred between organisms; genes can be duplicated in the same genome; and genes can be lost.

The scientists traced thousands of genes from 100 modern genomes back to those genes' first appearance on Earth to create a genomic fossil telling not only when genes came into being but also which ancient microbes possessed those genes. The work suggests that the collective genome of all life underwent an expansion between 3.3 and 2.8 billion years ago, during which time 27 percent of all presently existing gene families came into being.

Eric Alm, a professor in the Department of Civil and Environmental Engineering and the Department of Biological Engineering, and Lawrence David, who recently received his Ph.D. from MIT and is now a Junior Fellow in the Harvard Society of Fellows, have named this period the Archean Expansion.

Because so many of the new genes they identified are related to oxygen, Alm and David first thought that the emergence of oxygen might be responsible for the Archean Expansion. Oxygen did not exist in the Earth's atmosphere until about 2.5 billion years ago when it began to accumulate, likely killing off vast numbers of anerobic life forms in the Great Oxidation Event.

"The Great Oxidation Event was probably the most catastrophic event in the history of cellular life, but we don't have any biological record of it," says Alm.

Closer inspection, however, showed that oxygen-utilizing genes didn't appear until the tail end of the Archean Expansion 2.8 billion years ago, which is more consistent with the date geochemists assign to the Great Oxidation Event.

Instead, Alm and David believe they've detected the birth of modern electron transport, the biochemical process responsible for shuttling electrons within cellular membranes. Electron transport is used to breathe oxygen and by plants and some microbes during photosynthesis when they harvest energy directly from the sun. A form of photosynthesis called oxygenic photosynthesis is believed to be responsible for generating the oxygen associated with the Great Oxidation Event, and is responsible for the oxygen we breathe today.

The evolution of electron transport during the Archean Expansion would have enabled several key stages in the history of life, including photosynthesis and respiration, both of which could lead to much larger amounts of energy being harvested and stored in the biosphere.

"Our results can't say if the development of electron transport directly caused the Archean Expansion," says David. "Nonetheless, we can speculate that having access to a much larger energy budget enabled the biosphere to host larger and more complex microbial ecosystems."

David and Alm also went on to investigate how microbial genomes evolved after the Archean Expansion by looking at the metals and molecules associated with the genes and how those changed in abundance over time. They found an increasing percentage of genes using oxygen, and enzymes associated with copper and molybdenum, which is consistent with the geological record of evolution.

"What is really remarkable about these findings is that they prove that the histories of very ancient events are recorded in the shared DNA of living organisms," says Alm. "And now that we are beginning to understand how to decode that history, I have hope that we can reconstruct some of the earliest events in the evolution of life in great detail."

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>