Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists cast doubt on theory of what triggered Antarctic glaciation

12.07.2013
A team of U.S. and U.K. scientists has found geologic evidence that casts doubt on one of the conventional explanations for how Antarctica's ice sheet began forming.

Ian Dalziel, research professor at The University of Texas at Austin's Institute for Geophysics and professor in the Jackson School of Geosciences, and his colleagues report the findings today in an online edition of the journal Geology.


This is a physiographic map of the present-day Scotia Sea, Drake Passage and adjacent land masses. The white arrows show the present path of the several branches of the deep Antarctic Circumpolar Current (ACC) centered on its core. The area of study in the central Scotia Sea (CSS) is shown by the black box to the south of South Georgia island (SG). The volcano symbols mark the active South Sandwich volcanic arc (SSA). (WSS = western Scotia Sea; ESS = eastern Scotia Sea)

Credit: University of Texas at Austin

The Antarctic Circumpolar Current (ACC), an ocean current flowing clockwise around the entire continent, insulates Antarctica from warmer ocean water to the north, helping maintain the ice sheet. For several decades, scientists have surmised that the onset of a complete ACC played a critical role in the initial glaciation of the continent about 34 million years ago.

Now, rock samples from the central Scotia Sea near Antarctica reveal the remnants of a now-submerged volcanic arc that formed sometime before 28 million years ago and might have blocked the formation of the ACC until less than 12 million years ago. Hence, the onset of the ACC may not be related to the initial glaciation of Antarctica, but rather to the subsequent well-documented descent of the planet into a much colder "icehouse" glacial state.

"If you had sailed into the Scotia Sea 25 million years ago, you would have seen a scattering of volcanoes rising above the water," says Dalziel. "They would have looked similar to the modern volcanic arc to the east, the South Sandwich Islands."

Using multibeam sonar to map seafloor bathymetry, which is analogous to mapping the topography of the land surface, the team identified seafloor rises in the central Scotia Sea. They dredged the seafloor at various points on the rises and discovered volcanic rocks and sediments created from the weathering of volcanic rocks. These samples are distinct from normal ocean floor lavas and geochemically identical to the presently active South Sandwich Islands volcanic arc to the east of the Scotia Sea that today forms a barrier to the ACC, diverting it northward.

Using a technique known as argon isotopic dating, the researchers found that the samples range in age from about 28 million years to about 12 million years. The team interpreted these results as evidence that an ancient volcanic arc, referred to as the ancestral South Sandwich arc (ASSA), was active in the region during that time and probably much earlier. Because the samples were taken from the current seafloor surface and volcanic material accumulates from the bottom up, the researchers infer that much older volcanic rock lies beneath.

Combined with models of how the seafloor sinks vertically with the passage of time, the team posits that the ASSA originally rose above sea level and would have blocked deep ocean currents such as the ACC.

Two other lines of evidence support the notion that the ACC didn't begin until less than 12 million years ago. First, the northern Antarctic Peninsula and southern Patagonia didn't become glaciated until less than approximately 12 million years ago. And second, certain species of microscopic creatures called dinoflagellates that thrive in cold polar water began appearing in sediments off southwestern Africa around 11.1 million years ago, suggesting colder water began reaching that part of the Atlantic Ocean.

The research team also includes Larry Lawver and Marcy Davis at The University of Texas at Austin's Institute for Geophysics; Julian Pearce at Cardiff University (U.K.); P.F. Barker at the University of Birmingham (U.K.) (deceased); Alan Hastie at Cardiff University and the University of Edinburgh (U.K.); Dan Barfod at the Natural Environment Research Council's Argon Research Facility (U.K.); and Hans-Werner Schenke at the Alfred Wegener Institute (Germany).

Support was provided by the U.S. National Science Foundation's Office of Polar Programs, the U.K. Natural Environment Research Council, the Alfred Wegener Institute (Germany) and the British Antarctic Survey.

Marc Airhart | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>