Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Science paper examines role of aerosols in climate change

A group of scientists affiliated with the International Geosphere-Biosphere Programme (IGBP) have proposed a new framework to account more accurately for the effects of aerosols on precipitation in climate models. Their work appears in the 5 September issue of Science magazine in an article titled “Flood or Drought: How Do Aerosols Affect Precipitation?”.

The increase in atmospheric concentrations of man-made aerosols—tiny particles suspended in the air—from such sources as transportation, industry, agriculture, and urban land use not only poses serious problems to human health, but also has an effect on weather and climate.

Recent studies suggest that increased aerosol loading may have changed the energy balance in the atmosphere and at the Earth’s surface, and altered the global water cycle in ways that make the climate system more prone to precipitation extremes.

It appears that aerosol effects on clouds can induce large changes in precipitation patterns, which in turn may change not only regional water resources, but also may change the regional and global circulation systems that constitute the Earth’s climate.

The proposed framework improves scientists’ ability to simulate present and future climates by integrating, for the first time, the radiative and microphysical effects of aerosols on clouds. The radiative effects of aerosols on clouds mostly act to suppress precipitation, because they decrease the amount of solar radiation that reaches the land surface, and therefore cause less heat to be available for evaporating water and energizing convective rain clouds. Microphysical effects of aerosols can slow down the conversion of cloud drops into raindrops, which shuts off precipitation from very shallow and short-lived clouds.

Model simulations suggest that this delay of early rain causes greater amounts of cloud water and rain intensities later in the life cycle of the cloud. This suggests that rain patterns are shifting, leading to possible drought in one area and flooding downwind in another area. In addition, greater cooling below and heating above leads to enhanced upward heat transport. Model simulations have shown that greater heating in the troposphere enhances the atmospheric circulation system, shifting weather patterns due to changes convective activity.

Investigations of aerosol/precipitation effects are especially relevant to policy issues, as effects on the hydrological cycle may affect water availability, a great concern in many regions of the world. The IPCC, in its latest climate change assessment report, declared aerosols to be “the dominant uncertainty in radiative forcing (a concept used for quantitative comparisons of the strength of different human and natural agents in causing climate change)”. Therefore, aerosols, clouds and their interaction with climate are still the most uncertain areas of climate change and require multidisciplinary coordinated research efforts.

To that end, authors of the Science article are participating in a new, international research project designed to study the connections between aerosols, clouds, precipitation and climate (ACPC project). The project will bring together an international multidisciplinary group of scientists from the areas of aerosol physics and chemistry, cloud dynamics, and cloud microphysics under theauspices of two international research programmes, the International Geosphere-BiosphereProgramme (IGBP) and the World Climate Research Programme (WCRP).

The International Geosphere-Biosphere Programme (IGBP) is an international, interdisciplinary scientific research program built on networking and integration that studies global environmental change. It addresses scientific questions where an international approach is the best or the only way to provide an answer. It adds value to a large number of individual, national and regional research projects through integrating activities to achieve enhanced scientific understanding. The Vision of IGBP is to provide scientific knowledge to improve the sustainability of the living Earth.

Mary Ann Williams | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>