Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science Behind the Haiti Earthquake

27.01.2010
After being locked for over 250 years, tectonic plates along the Enriquillo Plantain Garden Fault finally slipped free. As the massive plates slipped past each other, they triggered a massive earthquake, devastating the Caribbean nation of Haiti and its capital within seconds.

In its wake, the magnitude-seven quake in Port-au-Prince created a humanitarian crisis that the world is still trying desperately to respond to. While the foremost concern is getting aid to the people of Haiti, many have questions about the quake itself. Why did it cause so much destruction? Why was it so strong? Why wasn’t it predicted?

While much information remains unknown, John Gosse, professor in Dalhousie University's Department of Earth Sciences, says there are many factors that could have led to the seismic events on January 12th and the 5.9 aftershock on January 19th.

“The Caribbean is surrounded by many active plates so the whole area is earthquake prone,” says Dr. Gosse, Canada Research Chair in Earth System Evolution. “The segment (of the Enriquillo Plantain Garden Fault) that ruptured runs right through Haiti but continues offshore and on to Jamaica.” It is one of a system of faults that are separating Cuba (North American plate) from Haiti (Caribbean Plate) over the past 30 million years.

Haiti and its neighbours such as the Dominican Republic, Puerto Rico and Jamaica, rest on the Caribbean Tectonic Plate. The relatively small plate is surrounded by larger plates, such as the North American Tectonic Plate, which is constantly applying pressure. The opposing forces create a great deal of seismic activity resulting in earthquakes and volcano formation.

Each year, the Caribbean Plate moves roughly 21 millimetres eastwards relative to the North American Plate and about seven millimeters of this is taken up by the Enriquillo fault. The last major earthquake along the Port-au-Prince segment occurred in 1751, significant because if that fault line was stuck or locked over the last 259 years that would account for a slip deficit on the fault segment of nearly two metres.

“If the plate is moving at least 21mm, the whole plate doesn’t move at one time, some parts stick,” explains Dr. Gosse. “So if you haven’t had major activity for 250 years, there is a lot of strain and about one to two metres of movement missing.”

“The longer the pressure builds, the greater the magnitude of the earthquake, explaining why this was a seven,” he continues. “Because this was a shallow earthquake, at about a depth of 10 kilometres, and right below Port au Prince, the destruction was massive. We normally don’t see this strength so shallow — bigger earthquakes usually occur at deeper depths.”

As to why this earthquake wasn’t predicted, Dr. Gosse explains that a number of factors play into the difficulty of predicting earthquakes.

“We’re good at knowing the magnitude and the area where earthquakes will occur, but bad at the when,” says Dr. Gosse. “The best way to estimate when is by doing detailed work around the fault by trenching – actually cutting through and looking at the sediment to map the history of slip in the area and try to determine frequency.”

But geologists haven't done the detailed work required to get a very precise prediction of when earthquakes will occur near Haiti, largely due to resources. Detailed work is done in areas of high population that have the funding for geologists to get there and do it, like at the San Andreas Fault in California.

“Unfortunately this area should have been studied, considering the large populations on the islands along this plate boundary,” says Dr. Gosse.

Another factor that can cause an earthquake is other earthquakes. The shockwave from one earthquake can trigger more earthquakes. While he can’t be sure of the cause, Dr. Gosse said seismic activity in the region the day before may have played a role.

“On January 11, there were two 4.9 earthquakes in Central America around Guatemala,” explains Dr. Gosse. “A wave coming from a 4.9 in that system could trigger the larger one, and could be a trigger for aftershocks.”

Aftershocks can start immediately following a quake and are unpredictable. They can last days or weeks, depending on magnitude, location, movement at the fault, depth, frequency, history of strain, and so on. For example, the 2004 magnitude-nine earthquake off the Sumatran coast, triggering the Indian Ocean tsunami, was followed by weeks of aftershocks.

Dr. Gosse hopes this tragedy will result in greater education and assistance to Haiti, to hopefully avoid another humanitarian crisis like this. “Geologists need to get there and do the detailed work – to get paleoseismic records so that we can establish frequency and understand the mechanics of the fault,” he explains.

Since damage depends largely on the quality of infrastructure and the topography of the region (surface features) Dr. Gosse hopes for greater awareness on the importance of building codes and proper construction.

“You can see on news coverage that houses were built on steep slopes and earthquakes will trigger landslides, potentially burying whole villages, so people need to be educated on what needs to be done to protect themselves,” he says.

While earthquakes are continually occurring all over the world, with over a thousand a year in the Caribbean alone, massive earthquakes are not as common. “

“If faults are continuously slipping, they will generate only small magnitude earthquakes,” explains Dr. Gosse. “However, over the last 300 years there have been about 20 major earthquakes in that area, revealing that some fault segments are locking.”

Charles Crosby | Newswise Science News
Further information:
http://www.dal.ca

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>